Biocompatible hydrogels have many applications, ranging from contact lenses to tissue engineering scaffolds. In most cases, rigorous sterilization is essential. Herein we show that a biocompatible diblock copolymer forms wormlike micelles via polymerization-induced self-assembly in aqueous solution. At a copolymer concentration of 10.0 w/w %, interworm entanglements lead to the formation of a free-standing physical hydrogel at 21 °C. Gel dissolution occurs on cooling to 4 °C due to an unusual worm-to-sphere order-order transition, as confirmed by rheology, electron microscopy, variable temperature (1)H NMR spectroscopy, and scattering studies. Moreover, this thermo-reversible behavior allows the facile preparation of sterile gels, since ultrafiltration of the diblock copolymer nanoparticles in their low-viscosity spherical form at 4 °C efficiently removes micrometer-sized bacteria; regelation occurs at 21 °C as the copolymer chains regain their wormlike morphology. Biocompatibility tests indicate good cell viabilities for these worm gels, which suggest potential biomedical applications.
SummaryStreptococcus sanguis is the most common oral bacterium causing infective endocarditis and its ability to adhere to platelets, leading to their activation and aggregation, is thought to be an important virulent factor. Previous work has shown that S. sanguis can bind directly to platelet glycoprotein (GP) Ib but the nature of the adhesin was unknown. Here, we have shown that a high molecular weight glycoprotein of S. sanguis mediates adhesion to glycocalacin. The bacterial glycoprotein was purified from cell extracts by chromatography on GPIb-and wheatgerm agglutinin affinity matrices and its interaction with GPIb was shown to be sialic acid-dependent. We designated the glycoprotein serine-rich protein A (SrpA). An insertional inactivation mutant lacking the SrpA of S. sanguis showed significantly reduced binding to glycocalacin, reduced adherence to platelets and a prolonged lag time to platelet aggregation. In addition, under flow conditions, platelets rolled and subsequently adhered on films of wild-type S. sanguis cells at low shear (50/s) but did not bind to films of the SrpA mutant. Platelets did not bind to wild-type bacterial cells at high shear (1500/s). These findings help to understand the mechanisms by which the organism might colonize platelet-fibrin vegetations.
Summary. The oral streptococci have undergone considerable taxonomic revision in recent years but there is still little information concerning associations between the newly defined species and disease. This study examined the identities of 47 strains of oral streptococci collected from 42 confirmed cases of infective endocarditis. By means of recently described physiological schemes, the most common species identified were Streptococcus sanguis sensu stricto (3 1.9 %), S. oralis (29.8 %) and S. gordonii (12.7 %). Other related species including S. mitis and " S. parasanguis" were less common. This indicates that attention should be focused on S. sanguis sensu stricto and S. oralis when considering possible pathogenic mechanisms involved in viridans streptococcal endocarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.