Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to dynamical phase transitions1,2. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter3-6. As a particularly striking example, the interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic "time-crystalline" phases7, which spontaneously break the discrete time-translation symmetry of the underlying drive8-11. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered †
Thermalization and scrambling are the subject of much recent study from the perspective of manybody quantum systems with locally bounded Hilbert spaces ("spin chains"), quantum field theory and holography. We tackle this problem in 1D spin-chains evolving under random local unitary circuits and prove a number of exact results on the behavior of out-of-time-ordered commutators (OTOCs), and entanglement growth in this setting. These results follow from the observation that the spreading of operators in random circuits is described by a "hydrodynamical" equation of motion, despite the fact that random unitary circuits do not have locally conserved quantities (e.g., no conserved energy). In this hydrodynamic picture quantum information travels in a front with a 'butterfly velocity' vB that is smaller than the light cone velocity of the system, while the front itself broadens diffusively in time. The OTOC increases sharply after the arrival of the light cone, but we do not observe a prolonged exponential regime of the form ∼ e λ L (t−x/v) for a fixed Lyapunov exponent λL. We find that the diffusive broadening of the front has important consequences for entanglement growth, leading to an entanglement velocity that can be significantly smaller than the butterfly velocity. We conjecture that the hydrodynamical description applies to more generic ergodic systems and support this by verifying numerically that the diffusive broadening of the operator wavefront also holds in a more traditional non-random Floquet spin-chain. We also compare our results to Clifford circuits, which have less rich hydrodynamics and consequently trivial OTOC behavior, but which can nevertheless exhibit linear entanglement growth and thermalization. arXiv:1705.08910v1 [cond-mat.str-el]
Recent work has shown that a variety of novel phases of matter arise in periodically driven Floquet systems. Among these are many-body localized phases which spontaneously break global symmetries and exhibit novel multiplets of Floquet eigenstates separated by quantized quasienergies. Here we show that these properties are stable to all weak local deformations of the underlying Floquet drives-including those that explicitly break the defining symmetries-and that the models considered until now occupy sub-manifolds within these larger "absolutely stable" phases. While these absolutely stable phases have no explicit global symmetries, they spontaneously break Hamiltonian dependent emergent symmetries, and thus continue to exhibit the novel multiplet structure. The multiplet structure in turn encodes characteristic oscillations of the emergent order parameter at multiples of the fundamental period. Altogether these phases exhibit a form of simultaneous long-range order in space and time which is new to quantum systems. We describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.arXiv:1605.00639v3 [cond-mat.dis-nn]
The scrambling of quantum information in closed many-body systems, as measured by out-oftime-ordered correlation functions (OTOCs), has lately received considerable attention. Recently, a hydrodynamical description of OTOCs has emerged from considering random local circuits. Numerical work suggests that aspects of this description are universal to ergodic many-body systems, even without randomness; a conjectured explanation for this is that while the random circuits have noise built into them, deterministic quantum systems, much like classically chaotic ones, "generate their own noise" and look effectively random on sufficient length and time scales. In this paper we extend this approach to systems with locally conserved quantities (e.g., energy). We do this by considering local random unitary circuits with a conserved U(1) charge and argue, with numerical and analytical evidence, that the presence of a conservation law slows relaxation in both time ordered and out-of-time-ordered correlation functions; both can have a diffusively relaxing component or "hydrodynamic tail" at late times. We verify the presence of such tails also in a deterministic, peridocially driven system. We show that for OTOCs, the combination of diffusive and ballistic components leads to a wave front with a specific asymmetric shape, decaying as a power law behind the front. These results also explain existing numerical investigations in non-noisy ergodic systems with energy conservation. Moreover, we consider OTOCs in Gibbs states, parametrized by a chemical potential µ, and apply perturbative arguments to show that for µ 1 the ballistic front of information-spreading can only develop at times exponentially large in µ -with the information traveling diffusively at earlier times. We also develop a new formalism for describing OTOCs and operator spreading, which allows us to interpret the saturation of OTOCs as a form of thermalization on the Hilbert space of operators. arXiv:1710.09827v3 [cond-mat.stat-mech] 9 Jul 2018
Recent work suggests that a sharp definition of 'phase of matter' can be given for periodically driven 'Floquet' quantum systems exhibiting many-body localization. In this work we propose a classification of the phases of interacting Floquet localized systems with (completely) spontaneously broken symmetries -we focus on the one dimensional case, but our results appear to generalize to higher dimensions. We find that the different Floquet phases correspond to elements of Z(G), the centre of the symmetry group in question. In a previous paper we offered a companion classification of unbroken, i.e., paramagnetic phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.