We show that the Haldane phase of S=1 chains is characterized by a double degeneracy of the entanglement spectrum. The degeneracy is protected by a set of symmetries (either the dihedral group of $\pi$-rotations about two orthogonal axes, time-reversal symmetry, or bond centered inversion symmetry), and cannot be lifted unless either a phase boundary to another, "topologically trivial", phase is crossed, or the symmetry is broken. More generally, these results offer a scheme to classify gapped phases of one dimensional systems. Physically, the degeneracy of the entanglement spectrum can be observed by adiabatically weakening a bond to zero, which leaves the two disconnected halves of the system in a finitely entangled state.Comment: 11 pages, 4 figures, references added, minor corrections, meta data update
An important and incompletely answered question is whether a closed quantum system of many interacting particles can be localized by disorder. The time evolution of simple (unentangled) initial states is studied numerically for a system of interacting spinless fermions in one dimension described by the random-field XXZ Hamiltonian. Interactions induce a dramatic change in the propagation of entanglement and a smaller change in the propagation of particles. For even weak interactions, when the system is thought to be in a many-body localized phase, entanglement shows neither localized nor diffusive behavior but grows without limit in an infinite system: interactions act as a singular perturbation on the localized state with no interactions. The significance for proposed atomic experiments is that local measurements will show a large but nonthermal entropy in the many-body localized state. This entropy develops slowly (approximately logarithmically) over a diverging time scale as in glassy systems.
We discuss the characterization and stability of the Haldane phase in integer spin chains on the basis of simple, physical arguments. We find that an odd-S Haldane phase is a topologically non-trivial phase which is protected by any one of the following three global symmetries: (i) the dihedral group of π-rotations about x, y and z axes; (ii) time-reversal symmetry S x,y,z → −S x,y,z ; (iii) link inversion symmetry (reflection about a bond center), consistently with previous results [Phys. Rev. B 81, 064439 (2010)]. On the other hand, an even-S Haldane phase is not topologically protected (i.e., it is indistinct from a trivial, site-factorizable phase). We show some numerical evidence that supports these claims, using concrete examples.
Many-body localization occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. Despite strong evidence for the existence of a many-body localization transition, a reliable extraction of the critical disorder strength is difficult due to a large drift with system size in the studied quantities. In this Letter, we explore two entanglement properties that are promising for the study of the many-body localization transition: the variance of the half-chain entanglement entropy of exact eigenstates and the long time change in entanglement after a local quench from an exact eigenstate. We investigate these quantities in a disordered quantum Ising chain and use them to estimate the critical disorder strength and its energy dependence. In addition, we analyze a spin-glass transition at large disorder strength and provide evidence for it being a separate transition. We, thereby, give numerical support for a recently proposed phase diagram of many-body localization with localization protected quantum order [Huse et al., Phys. Rev. B 88, 014206 (2013).
Thermalization and scrambling are the subject of much recent study from the perspective of manybody quantum systems with locally bounded Hilbert spaces ("spin chains"), quantum field theory and holography. We tackle this problem in 1D spin-chains evolving under random local unitary circuits and prove a number of exact results on the behavior of out-of-time-ordered commutators (OTOCs), and entanglement growth in this setting. These results follow from the observation that the spreading of operators in random circuits is described by a "hydrodynamical" equation of motion, despite the fact that random unitary circuits do not have locally conserved quantities (e.g., no conserved energy). In this hydrodynamic picture quantum information travels in a front with a 'butterfly velocity' vB that is smaller than the light cone velocity of the system, while the front itself broadens diffusively in time. The OTOC increases sharply after the arrival of the light cone, but we do not observe a prolonged exponential regime of the form ∼ e λ L (t−x/v) for a fixed Lyapunov exponent λL. We find that the diffusive broadening of the front has important consequences for entanglement growth, leading to an entanglement velocity that can be significantly smaller than the butterfly velocity. We conjecture that the hydrodynamical description applies to more generic ergodic systems and support this by verifying numerically that the diffusive broadening of the operator wavefront also holds in a more traditional non-random Floquet spin-chain. We also compare our results to Clifford circuits, which have less rich hydrodynamics and consequently trivial OTOC behavior, but which can nevertheless exhibit linear entanglement growth and thermalization. arXiv:1705.08910v1 [cond-mat.str-el]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.