Scalable processing of solid-state battery (SSB) components and their integration is a key bottleneck toward the practical deployment of these systems. In the case of a complex system like a SSB, it becomes increasingly vital to envision, develop, and streamline production systems that can handle different materials, form factors, and chemistries as well as processing conditions. Herein, we highlight isostatic pressing (ISP) as a versatile processing platform for large-scale production of the currently most promising solid electrolyte materials. We briefly summarize the development of ISP techniques as well as the processing methods and windows accessible. Subsequently, we discuss recent reports on SSBs that leverage ISP techniques and their impact on the electrochemical performance of the systems. Finally, we also provide a techno-economic analysis for implementing ISP at scale along with some key perspectives, challenges, and future directions for large-scale production of SSB components and integration.
Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10,782 Pa s m(-2) in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.