Nine days of hindlimb suspension resulted in atrophy (55%) and loss of protein (53%) in rat soleus muscle due to a marked elevation in protein breakdown (66%, P < 0.005). To define which proteolytic system(s) contributed to this increase, soleus muscles from unweighted rats were incubated in the presence of proteolytic inhibitors. An increase in lysosomal and Ca 2+-activated proteolysis (254%, P < 0.05) occurred in the atrophying incubated muscles. In agreement with the measurements in vitro, cathepsin B, cathepsins B + L and m-calpain enzyme activities increased by 111%, 92% and 180% (P < 0.005) respectively in the atrophying muscles. Enhanced mRNA levels for these proteinases (P < 0.05 to P < 0.001) paralleled the increased enzyme activities, suggesting a transcriptional regulation of these enzymes. However, the lysosomal and Ca 2+-dependent proteolytic pathways accounted for a minor part of total proteolysis in both control (9%) and unweighted rats (18%). Furthermore the inhibition of these pathways failed to suppress increased protein breakdown in unweighted muscle. Thus a non-lysosomal Ca 2+-independent proteolytic process essentially accounted for the increased proteolysis and subsequent muscle wasting. Increased mRNA levels for ubiquitin, the 14 kDa ubiquitin-conjugating enzyme E2 (involved in the ubiquitylation of protein substrates) and the C2 and C9 subunits of the 20 S proteasome (i.e. the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates) were observed in the atrophying muscles (P < 0.02 to P < 0.001). Analysis of C9 mRNA in polyribosomes showed equal distribution into both translationally active and inactive mRNA pools, in either unweighted or control rats. These results suggest that increased ATP-ubiquitin-dependent proteolysis is most probably responsible for muscle wasting in the unweighted soleus muscle.
The perturbations of equilibrium after prolonged exercise were investigated by dynamic posturography on nine well-trained subjects (four athletes and five triathletes). A sensory organization test, where the platform and visual surround were either stable or referenced to the subject's sway with eyes open or closed, was performed before and after a 25-km run (average time 1 h 44 min) by the nine subjects. In addition, the same test was performed on the five triathletes only, before and after ergocycle exercise of identical duration (i.e. ergocycle time = running time). The results showed that the ability to maintain postural stability during conflicting sensory conditions decreased after exercise, with some differences depending on the kind of exercise. Sensory analysis revealed that the subjects made less effective use of vestibular inputs after running than after cycling (P < 0.05). Adaptation to prolonged stimulation of proprioceptive, vestibular and visual inputs had probably occurred in the integrating centres during exercise. This adaptation was maintained during the recovery period and could explain the postexercise balance disorders. Other mechanisms such as impairment of motor efferents or haemodynamic changes should not be excluded.
The purpose of the present study was to check the increase in energy cost of running at the end of a triathlon and a marathon and to link the decrease in energy cost of running with running kinematic parameters. Seven well-trained triathletes performed 3 experimental trials: a 2 h 15 min triathlon (30 min swimming, 60 min cycling and 45 min treadmill running), a 2 h 15 min marathon where the last 45 min (MR) were run at the same speed as the triathlon run (TR) (i.e. 75% of maximal aerobic speed), and a 45 min isolated run (IR) done at the same speed. Oxygen uptake (VO2), minute ventilation (VE), heart rate (HR), respiratory exchange ratio (RER) and kinematic data were recorded during the 3 exercise runs. The results confirm a higher energy cost during MR compared with TR (+ 3.2%; p <0.05) and IR (+ 11.7%; p <0.01). The triathlon and the marathon were associated with greater weight loss (1.6 +/- 0.02 kg; p <0.01) than the isolated run (0.7 +/- 0.2 kg). After cycling, the mean stride length in TR1 was lower during IR1 and increased at the end of TR. The results show that MR led to decrease in stride length compared with IR. After cycling, the triathletes adopted a more forward leaning posture and the trunk gradient was less marked during the marathon. Moreover, the extension of the knee at foot-strike and the maximal knee angle in non-support phase both increased during MR compared with TR and IR. However, it appears that no single kinematic variable can fully explain the decrease in running efficiency: it seems that running economy during a triathlon and a marathon are linked to global alterations of many different parameters.
This study examined the effect of a probiotics supplementation on respiratory tract infection (RTI) and immune and hormonal changes during the French Commando training (3-week training followed by a 5-day combat course). Cadets (21 +/- 0.4 years) received either a probiotics (n = 24) or a placebo (n = 23) supplementation over the training period. We found no difference in the RTI incidence between groups but a significantly greater proportion of rhinopharyngitis in the probiotic group (p < 0.05). Among immune parameters, the major finding was an immunoglobulin A decrease after the combat course only in the placebo group (p < 0.01), but the difference between the two groups was not significant. A greater increase in dehydroepiandrostane sulfate was observed in the probiotics group after the combat course (p < 0.05). This study suggested that the benefits of a probiotics supplementation in a multistressor environment relied mainly on its capacity to prevent the infection to spread throughout the respiratory tract.
This investigation examined the impact of a multistressor situation on salivary immunoglobulin A (sIgA) levels, and incidence of upper respiratory tract infection (URTI) during the French commando training (3 weeks of training followed by a 5-day combat course). For the URTI, the types of symptoms were classified according to the anatomical location of the infection. Saliva samples were collected (8 a.m.) from 21 males [21 (2) years] before entry into the commando training, the morning following the 3 weeks of training, after the 5-day combat course, and after 1 week of recovery. sIgA, protein and cortisol concentrations were measured. Symptoms of URTI were recorded during the study from health logs and medical examinations. After the 3 weeks of training, the sIgA concentration was not changed, although it was reduced after the 5-day course [from 120 (14) mg l(-1) to 71 (9) mg l(-1), P<0.01]. It returned to pre-training levels within a week of recovery. The incidence of URTI increased during the trial (chi(2)=53.48; P<0.01), but was not related to sIgA. Among the 30 episodes of URTI reported, there were 12 rhino-pharyngitis, 6 bronchitis, 5 tonsillitis, 4 sinusitis and 3 otitis. Cortisol levels were raised after the 3-week training (P<0.01), dropping below baseline after the combat course (P<0.01). Stressful situations have an adverse effect on mucosal immunity and incidence of URTI. However, the relationship between sIgA and illness remained unclear. The large proportion of rhino-pharyngitis indicated that the nasopharyngeal cavity is at a higher risk of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.