International audienceIn recent times it has become increasingly clear thatreleases of trace gases from human activity have a potentialfor causing change in the upper atmosphere. However,our knowledge of systematic changes and trends inthe temperature of the mesosphere and lower thermosphereis relatively limited compared to the Earths loweratmosphere, and not much effort has been made to synthesizethese results so far. In this article, a comprehensivereview of long-term trends in the temperature of the regionfrom 50 to 100 km is made on the basis of the availableup-to-date understanding of measurements and model calculations.An objective evaluation of the available datasets is attempted, and important uncertainly factors arediscussed. Some natural variability factors, which arelikely to play a role in modulating temperature trends,are also briefly touched upon. There are a growing numberof experimental results centered on, or consistent with,zero temperature trend in the mesopause region (80–100km). The most reliable data sets show no significant trendbut an uncertainty of at least 2 K/decade. On the otherhand, a majority of studies indicate negative trends inthe lower and middle mesosphere with an amplitude ofa few degrees (2–3 K) per decade. In tropical latitudesthe cooling trend increases in the upper mesosphere.The most recent general circulation models indicateincreased cooling closer to both poles in the middlemesosphere and a decrease in cooling toward the summerpole in the upper mesosphere. Quantitatively, thesimulated cooling trend in the middle mesosphere producedonly by CO2 increase is usually below the observedlevel. However, including other greenhouse gasesand taking into account a “thermal shrinking” of theupper atmosphere result in a cooling of a few degreesper decade. This is close to the lower limit of the observednonzero trends. In the mesopause region, recentmodel simulations produce trends, usually below 1 K/decade,that appear to be consistent with most observationsin this regio
An unusually long data set was acquired at the sodium lidar facility at Colorado State University (41N, 105W), between Sep 18 and Oct 01, 2003, including a 9‐day continuous observation. This time is long enough to average out the perturbations of gravity waves and short‐period planetary waves. As such, it can be used to define tidal‐period perturbations in temperature and horizontal wind. Assuming the sodium mixing ratio is a constant of motion, the observed tidal‐period oscillation in sodium density follows that of vertical wind. Thus, the data set defines tidal‐period perturbations of temperature and wind vector. The observed amplitudes and phases were compared to Global Scale Wave Model predictions (both GSWM00 and GSWM02). We found excellent agreement in diurnal phases and reasonable agreement in semidiurnal phases. However, GSWM02 overestimates diurnal amplitudes and both model versions underestimate observed semidiurnal amplitudes. Since the data period is long enough for the study of planetary waves and of tidal variability, we perform spectral analysis of the data, revealing a strong quasi 3‐day wave in meridional wind, a 14 hour perturbation in zonal wind, and both 14‐hour and 10‐hour periods in meridional wind, likely the result of nonlinear interactions. The observed semidiurnal amplitudes are much larger than the corresponding diurnal amplitudes above 85 km, and over a few days the diurnal and semidiurnal amplitudes vary by factors of 2–3. Causes for the observed tidal variability in terms of planetary wave modulation and tide‐gravity wave interaction are explored qualitatively.
[1] On the basis of Colorado State University (CSU) Na lidar observations over full diurnal cycles from May 2002 to April 2006, a harmonic analysis was performed to extract semidiurnal perturbations in mesopause region temperature and zonal and meridional winds over Fort Collins, Colorado (40.6°N, 105.1°W). The observed monthly results are in good agreement with MF radar tidal climatology for Urbana, Illinois, and with predictions of the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), sampled at the CSU Na lidar coordinates. The observed semidiurnal tidal period perturbation within the mesopause region is found to be dominated by propagating modes in winter and equinoctial months with a combined vertical wavelength varying from 50 km to almost 90 km and by a mode with evanescent behavior and longer vertical wavelength (100-150 km) in summer months, most likely due to dominance of (2, 2) and (2, 3) tidal (Hough) modes. The observed semidiurnal tidal amplitude shows strong seasonal variation, with a large amplitude during the winter months, with a higher growth rate above $85-90 km, and minimal amplitudes during the summer months. Maximum tidal amplitudes over 50 m/s for wind and 12 K for temperature occur during fall equinox. A detailed comparison with HAMMONIA predictions shows excellent agreement in semidiurnal phases. HAMMONIA-predicted semidiurnal amplitudes generally agree well with observations; however, HOMMONIA underestimates temperature amplitudes in some of the nonsummer months as well as zonal wind and meridional wind amplitudes in April and September but overestimates them in February. To reveal the effects of the atmospheric background on vertical propagation of tidal modes and their relative importance in the composite semidiurnal tide during different seasons, we use the lidarobserved monthly mean temperature and zonal wind from the same data set as well as HAMMONIA output to calculate the vertical wave number seasonal variations of the major tidal modes of the migrating semidiurnal tide. This leads to a qualitative understanding of the lidar-observed and HAMMONIA-predicted seasonal variation of the semidiurnal tidal perturbation.
[1] The wind and temperature measurements from an unusually long period operation of the sodium lidar at Colorado State University (41°N, 105°W) around September equinox 2003 showed significant short-term tidal variability. Coincident with the large tidal changes, a strong temperature inversion layer was also observed above 90 km. Examination of the simultaneous temperature measurement from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, not only confirms the existence of the inversion layer but also reveals the global nature of the inversion, suggesting the presence of a transient planetary wave in the mesosphere. The large tidal variability, therefore, is probably a consequence of the interaction between the transient planetary wave and tides. This possibility is investigated by using the NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) and by comparing model results with the lidar, SABER, and TIMED Doppler Interferometer (TIDI) measurements. With a large transient planetary wave specified at the model lower boundary, the model is able to produce strong diurnal tidal variability comparable to that from the lidar observation, and the modeled temperature inversion is similar to that from the SABER measurement. The model results suggest that the planetary/tidal wave interaction excites nonmigrating tides and modulates the gravity modes and/or the rotational modes of the diurnal migrating tide. Among the nonmigrating tides, the diurnal zonally symmetric (S = 0) component is the strongest, and its interaction with the planetary wave leads to a strong diurnal eastward wave number 1 component.
We describe a new two‐frequency lidar for measuring Na temperature profiles that uses a stabilized cw single‐mode dye laser oscillator (rms frequency jitter < 1 MHz) followed by a pulsed‐dye power amplifier (140 MHz FWHM linewidth) which is pumped by an injection‐locked Nd: YAG laser. The laser oscillator is tuned to the two operating frequencies by observing the Doppler‐free structure of the Na D2 fluorescence spectrum in a vapor cell. The lidar technique and our initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO (40.6°N,105°W) are described. Absolute temperature accuracies at the Na layer peak of better than ±3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.