A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV–vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA. The NIR-mediated drug release behavior of the Aurod@pNIPAAm-PEGMA nanogel was studied with zinc phthalocyanines (ZnPc4) as a drug model. It was also demonstrated that the loaded ZnPc4 could keep the capability of generating singlet oxygen, and the in vitro study showed a great photodynamic therapy (PDT) effect on Hela cells. It thus indicated the potential of this Aurod@pNIPAAm-PEGMA nanogel for application as a drug carrier in PDT, which might make contributions to oncotherapy.
To achieve an efficiency of intracellular photosensitizers (PSs) delivery and efficacy of photodynamic therapy, we have developed a novel class of PS formulation for encapsulating sulfonated aluminum phthalocyanine (AlPcS4) by taking advantage of the membrane-disruptive peptides Tat/HA2 and the photothermally triggered delivery system using AuNR@pNIPAAm. The coordinated effects of cell penetrating peptide Tat and fusogenic peptide HA2 could enhance the efficient cellular internalization and endo/lysosome escape of PSs delivery systems. Singlet oxygen generation was inhibited due to the reaction between loaded AlPcS4 and Au nanorods, which indicated that the AlPcS4-loaded, AuNR@pNIPAAm delivery system might be nonphototoxic in the circulatory system. However, this PSs-loaded nanosystem became highly phototoxic as it underwent the near-infrared irradiation by using the combined lights of 808 and 680 nm. Upon irradiation, the Tat/HA2 conjugated AuNR@pNIPAAm-Pc elicited an active photodynamic response against the cancer cells, leading to effective cells killing via mitochondria-associated apoptotic pathway. This study also demonstrated improved PDT therapeutic efficacy after intravenous administration of Tat/HA2-AuNR@pNIPAAm-Pc and the subsequent lights irradiations in tumor-bearing mice. We describe here a strategy for enhanced photodynamic eradication of solid tumors by endo/lysosomal escape and highlight the great promise of peptide-based nanocarriers used for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.