The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.
We present the results from a survey for 12 CO emission in 40 luminous sub-millimetre galaxies (SMGs), with 850-µm fluxes of S 850µm = 4 − 20 mJy, conducted with the Plateau de Bure Interferometer. We detect 12 CO emission in 32 SMGs at z ∼ 1.2 -4.1, including 16 SMGs not previously published. Using multiple 12 CO line (J up = 2-7) observations, we derive a median spectral line energy distribution for luminous SMGs and use this to estimate a mean gas mass of (5.3 ± 1.0) × 10 10 M . We report the discovery of a fundamental relationship between 12 CO FWHM and 12 CO line luminosity in high-redshift starbursts, which we interpret as a natural consequence of the baryon-dominated dynamics within the regions probed by our observations. We use far-infrared luminosities to assess the star-formation efficiency in our SMGs, finding a steepening of the L CO -L FIR relation as a function of increasing 12 CO J up transition. We derive dynamical masses and molecular gas masses, and use these to determine the redshift evolution of the gas content of SMGs, finding that they do not appear to be significantly more gas rich than less vigorously star-forming galaxies at high redshifts. Finally, we collate X-ray observations, and study the interdependence of gas and dynamical properties of SMGs with their AGN activity and supermassive black hole masses (M BH ), finding that SMGs lie significantly below the local M BH -σ relation. We conclude that SMGs represent a class of massive, gas-rich ultraluminous galaxies with somewhat heterogeneous properties, ranging from starbursting disc-like systems with L∼ 10 12 L , to the most highly star-forming mergers in the Universe.
Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest of these galaxies have infrared luminosities in excess of 10 13 L with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both spacebased and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the start and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the bestunderstood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al. 2002), but also the selection and characterization of more recently discovered DSFG populations. We review DSFG population statistics, their physical properties including dust, gas and stellar contents, their environments, and current theoretical models related to the formation and evolution of these galaxies.
ALMA observations of the long wavelength dust continuum are used to estimate the interstellar medium (ISM) masses in a sample of 708 galaxies at z=0.3 to 4.5 in the COSMOS field. The galaxy sample has known farinfrared luminosities and, hence, star formation rates (SFRs) and stellar masses ( * M ) from the optical-infrared spectrum fitting. The galaxies sample SFRs from the main sequence (MS) to 50 times above the MS. The derived ISM masses are used to determine the dependence of gas mass on redshift, * M , and specific SFR (sSFR) relative to the MS. The ISM masses increase approximately with the 0.63 power of the rate of increase in SFRs with redshift and the 0.32 power of the sSFR/sSFR MS . The SF efficiencies also increase as the 0.36 power of the SFR redshift evolution and the 0.7 power of the elevation above the MS; thus the increased activities at early epochs are driven by both increased ISM masses and SF efficiency. Using the derived ISM mass function, we estimate the accretion rates of gas required to maintain continuity of the MS evolution (> M 100 yr −1 at z > 2.5). Simple power-law dependencies are similarly derived for the gas accretion rates. We argue that the overall evolution of galaxies is driven by the rates of gas accretion. The cosmic evolution of total ISM mass is estimated and linked to the evolution of SF and active galactic nucleus activity at early epochs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.