Clinical involvement of the nervous system in visceral larva migrans due to
Background Ureaplasma diversum has numerous virulence factors that contribute to pathogenesis in cattle, including Lipid-associated membrane proteins (LAMPs). Therefore, the objectives of this study were to evaluate in silico important characteristics for immunobiological applications and for heterologous expression of 36 LAMPs of U. diversum (UdLAMPs) and, also, to verify by conventional PCR the distribution of these antigens in strains of Brazilian states (Bahia, Minas Gerais, São Paulo, and Mato Grosso do Sul). The Manatee database was used to obtain the gene and peptide sequences of the antigens. Similarity and identity studies were performed using BLASTp and direct antigenicity was evaluated by the VaxiJen v2.0 server. Epitope prediction for B lymphocytes was performed on the BepiPred v2.0 and CBTOPE v1.0 servers. NetBoLApan v1.0 was used to predict CD8+ T lymphocyte epitopes. Subcellular location and presence of transmembrane regions were verified by the software PSORTb v3.0.2 and TMHMM v2.2 respectively. SignalP v5.0, SecretomeP v2.0, and DOLOP servers were used to predict the extracellular excretion signal. Physico-chemical properties were evaluated by the web-software ProtParam, Solpro, and Protein-sol. Results In silico analysis revealed that many UdLAMPs have desirable properties for immunobiological applications and heterologous expression. The proteins gudiv_61, gudiv_103, gudiv_517, and gudiv_681 were most promising. Strains from the 4 states were PCR positive for antigens predicted with immunogenic and/or with good characteristics for expression in a heterologous system. Conclusion These works contribute to a better understanding of the immunobiological properties of the UdLAMPs and provide a profile of the distribution of these antigens in different Brazilian states.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for causing Coronavirus Disease-2019 (COVID-19), a heterogeneous clinical condition that manifests varying symptom severity according to the demographic profile of the studied population. While many studies have focused on the spread of COVID-19 in large urban centers in Brazil, few have evaluated medium or small cities in the Northeast region. The aims of this study were: (i) to identify risk factors for mortality from SARS-CoV-2 infection, (ii) to evaluate the gene expression patterns of key immune response pathways using nasopharyngeal swabs of COVID-19 patients, and (iii) to identify the circulating SARS-CoV-2 variants in the residents of a medium-sized city in Northeast Brazil. A total of 783 patients infected with SARS-CoV-2 between May 2020 and August 2021 were included in this study. Clinical-epidemiological data from patients who died and those who survived were compared. Patients were also retrospectively divided into three groups based on disease severity: asymptomatic, mild, and moderate/severe. Samples were added to a qPCR array for analyses of 84 genes involved with immune response pathways and sequenced using the Oxford Nanopore MinION technology. Having pre-existing comorbidity; being male; having cardiovascular disease, diabetes, and/or chronic obstructive pulmonary disease; and PCR cycle threshold (Ct) values under 22 were identified as risk factors for mortality. Analysis of the expression profiles of inflammatory pathway genes showed that the greater the infection severity, the greater the activation of inflammatory pathways, triggering the cytokine storm and downregulating anti-inflammatory pathways. Viral genome analysis revealed the circulation of multiple lineages, such as B.1, B.1.1.28, Alpha, and Gamma, suggesting that multiple introduction events had occurred over time. This study’s findings help identify the specific strains and increase our understanding of the true state of local health. In addition, our data demonstrate that epidemiological and genomic surveillance together can help formulate public health strategies to guide governmental actions.
The present systematic review and meta-analysis aimed to investigate the use of recombinant proteins to diagnose STIs and evaluate the performance of the tests identified. The databases, SciELO, PubMed, CAPES Journal Portal, and LILACS, were searched according to the PRISMA protocol. A study was considered eligible if it met previously defined criteria. The risk of study bias was assessed according to the QUADAS-2 protocol. The meta-analysis was performed based on the random-effects model, and heterogeneity was quantified using the I² statistic. A total of 1,355 studies were selected, 30 of which were relevant to the following: human immunodeficiency virus (12/30), Treponema pallidum (10/30), Chlamydia trachomatis (3/30), herpes simplex virus (HSV, 2/30), Trichomonas vaginalis (2/30), and HSV/cytomegalovirus (1/30). The main serological tests were ELISA and immunochromatography. The risk of bias was low for most included studies. According to each microorganism, the meta-analysis revealed satisfactory sensitivity and specificity for the analyzed tests. The findings reinforce the relevance of diagnostic tests based on recombinant proteins as viable alternatives for production and inclusion in clinical practice. PROSPERO registration number: CRD42020206331.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.