Introduction. Perinatal adverse events put neonates at high risk for short and long-term disabilities, including cerebral palsy (CP). The most recent guidelines about early intervention in infants with brain damage have emphasized the importance of family involvement from the very first phases of development. Early parent-infant interactions are pivotal in promoting infant cognitive and social developmental trajectories. However, little is known about the extent to which severe adverse perinatal events can affect the quality of early parent-infant interactions. Patients and Methods. We systematically searched five databases (PubMed, PsycINFO, EMBASE, CINAHL, and Cochrane Library) for the publications assessing parent-infant interactions in infants at high neurological risk within 1 year of age. Articles were selected if they involved direct comparison between high-risk populations and healthy controls or low-risk populations, and if quantitative or semiquantitative tools were used to assess the parent-infant interaction. Measures of parent-infant interaction included infant interactive behaviors, parental interactive behaviors, and dyadic interactive patterns. Results. The search yielded 18 publications that met the inclusion criteria. The articles represent a high level of heterogeneity in terms of infant neurological risk, infant age, and tools assessing interactive behaviors. Both infant and maternal behaviors within the investigated interactive exchanges were reported to be compromised, leading to subsequent overall impairment of the dyadic patterns. Conclusion. While the studies reviewed here provide general and important information, the review did not yield a clear picture of early dyadic interactions in high-risk infant populations. Further observational studies are warranted in order to provide a more accurate knowledge of the early dyadic exchanges between infants at high neurological risk and their parents, as they might provide a critical opportunity for early family centered habilitative interventions.
Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a “maladaptive” strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke.
Aim To determine whether interhemispheric difference in sleep spindles in infants with perinatal unilateral brain injury could link to a pathological network reorganization that underpins the development of unilateral cerebral palsy (CP). Method This was a multicentre retrospective study of 40 infants (19 females, 21 males) with unilateral brain injury. Sleep spindles were detected and quantified with an automated algorithm from electroencephalograph records performed at 2 months to 5 months of age. The clinical outcomes after 18 months were compared to spindle power asymmetry (SPA) between hemispheres in different brain regions. Results We found a significantly increased SPA in infants who later developed unilateral CP (n=13, with the most robust interhemispheric difference seen in the central spindles. The best individual‐level prediction of unilateral CP was seen in the centro‐occipital spindles with an overall accuracy of 93%. An empiric cut‐off level for SPA at 0.65 gave a positive predictive value of 100% and a negative predictive value of 93% for later development of unilateral CP. Interpretation Our data suggest that automated analysis of interhemispheric SPA provides a potential biomarker of unilateral CP at a very early age. This holds promise for guiding the early diagnostic process in infants with a perinatally identified brain injury. What this paper adds Unilateral perinatal brain injury may affect the development of electroencephalogram (EEG) sleep spindles. Interhemispheric asymmetry in sleep spindles can be quantified with automated EEG analysis. Spindle power asymmetry can be a potential biomarker of unilateral cerebral palsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.