The desynchronization of alpha and beta oscillations (mu rhythm) in the central scalp EEG during action observation and action execution is thought to reflect neural mirroring processes. However, the extent to which mirror neurons (MNs) or other populations of neurons contribute to such EEG desynchronization is still unknown. Here, we provide the first evidence that, in the monkey, the neuronal activity recorded from the ventral premotor cortex (PMv) strongly contributes to the EEG changes occurring in the beta band over central scalp electrodes, during executed and observed actions. We simultaneously recorded scalp EEG and extracellular activity, Multi Unit Activity (MUA) and Local Field Potentials (LFP), from area F5 of two macaques executing and observing grasping actions. We found that MUA highly correlates with an increase in high gamma LFP power and, interestingly, such LFP power increase also correlates to EEG beta - and in part also to alpha - desynchronization. In terms of timing of signal changes, the increase in high gamma LFP power precedes the EEG desynchronization, during both action observation and execution, thus suggesting a causal role of PMv neuronal activity in the modulation of the alpha and beta mu-rhythm. Lastly, neuronal signals from deeper layers of PMv exert a greater contribution than superficial layers to the EEG beta rhythm modulation, especially during the motor task. Our findings have clear implications for EEG studies in that they demonstrate that the activity of different populations of neurons in PMv contribute to the generation of the mu-rhythm.
Mirror neurons (MNs) in the inferior parietal lobule and ventral premotor cortex (PMv) can code the intentions of other individuals using contextual cues. Gaze direction is an important social cue that can be used for understanding the meaning of actions made by other individuals. Here we addressed the issue of whether PMv MNs are influenced by the gaze direction of another individual. We recorded single-unit activity in macaque PMv while the monkey was observing an experimenter performing a grasping action and orienting his gaze either toward (congruent gaze condition) or away (incongruent gaze condition) from a target object. The results showed that one-half of the recorded MNs were modulated by the gaze direction of the human agent. These gaze-modulated neurons were evenly distributed between those preferring a gaze direction congruent with the direction where the grasping action was performed and the others that preferred an incongruent gaze. Whereas the presence of congruent responses is in line with the usual coupling of hand and gaze in both executed and observed actions, the incongruent responses can be explained by the long exposure of the monkeys to this condition. Our results reveal that the representation of observed actions in PMv is influenced by contextual information not only extracted from physical cues, but also from cues endowed with biological or social value.
Introduction. Perinatal adverse events put neonates at high risk for short and long-term disabilities, including cerebral palsy (CP). The most recent guidelines about early intervention in infants with brain damage have emphasized the importance of family involvement from the very first phases of development. Early parent-infant interactions are pivotal in promoting infant cognitive and social developmental trajectories. However, little is known about the extent to which severe adverse perinatal events can affect the quality of early parent-infant interactions. Patients and Methods. We systematically searched five databases (PubMed, PsycINFO, EMBASE, CINAHL, and Cochrane Library) for the publications assessing parent-infant interactions in infants at high neurological risk within 1 year of age. Articles were selected if they involved direct comparison between high-risk populations and healthy controls or low-risk populations, and if quantitative or semiquantitative tools were used to assess the parent-infant interaction. Measures of parent-infant interaction included infant interactive behaviors, parental interactive behaviors, and dyadic interactive patterns. Results. The search yielded 18 publications that met the inclusion criteria. The articles represent a high level of heterogeneity in terms of infant neurological risk, infant age, and tools assessing interactive behaviors. Both infant and maternal behaviors within the investigated interactive exchanges were reported to be compromised, leading to subsequent overall impairment of the dyadic patterns. Conclusion. While the studies reviewed here provide general and important information, the review did not yield a clear picture of early dyadic interactions in high-risk infant populations. Further observational studies are warranted in order to provide a more accurate knowledge of the early dyadic exchanges between infants at high neurological risk and their parents, as they might provide a critical opportunity for early family centered habilitative interventions.
The observation of actions executed by others results in desynchronization of electroencephalogram (EEG) in the alpha and beta frequency bands recorded from the central regions in humans. On the other hand, mirror neurons, which are thought to be responsible for this effect, have been studied only in macaque monkeys, using single-cell recordings. Here, as a first step in a research programme aimed at understanding the parallels between human and monkey mirror neuron systems (MNS), we recorded EEG from the scalp of two monkeys during action observation. The monkeys were trained to fixate on the face of a human agent and subsequently to fixate on a target upon which the agent performed a grasping action. We found that action observation produced desynchronization in the 19-25 Hz band that was strongest over anterior and central electrodes. These results are in line with human data showing that specific frequency bands within the power spectrum of the ongoing EEG may be modulated by observation of actions and therefore might be a specific marker of MNS activity.
Intranasal administration of oxytocin (OT) has been found to facilitate prosocial behaviors, emotion recognition and cooperation between individuals. Recent electroencephalography (EEG) investigations have reported enhanced mu rhythm (alpha: 8-13 Hz; beta: 15-25 Hz) desynchronization during the observation of biological motion and stimuli probing social synchrony after the administration of intranasal OT. This hormone may therefore target a network of cortical circuits involved in higher cognitive functions, including the mirror neuron system (MNS). Here, in a double-blind, placebo-controlled, between-subjects exploratory study, we investigated whether intranasal OT modulates the cortical activity from sensorimotor areas during the observation and the execution of social and non-social grasping actions. Participants underwent EEG testing after receiving a single dose (24 IU) of either intranasal OT or placebo. Results revealed an enhancement of alpha -but not beta -desynchronization during observation and execution of social grasps, especially over central and parietal electrodes, in participants who received OT. No differences between conditions were found in the control group (CTRL). Moreover, we found a significant difference over the central-parietal region between the OT and CTRL group only within the social condition. These results suggest a possible action of intranasal OT on sensorimotor circuits involved in social perception and action understanding, which might contribute to facilitate the prosocial effects typically reported by behavioral studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.