Methylglyoxal (MG) is quantitatively the most important precursor to advanced glycation end-products (AGEs), and evidence is accumulating that it is also a causally linked to diabetes and aging related diseases. Living systems primarily reside on the glyoxalase system to detoxify MG into benign D-lactate. The flux to either glycation or detoxification, accordingly, is a key parameter for how well a system handles the ubiquitous glyoxal burden. Furthermore, insight into proteins and in particular their individual modification sites are central to understanding the involvement of MG and AGE in diabetes and aging related diseases. Here, we present a simple method to simultaneously monitor the flux of MG both to D-lactate and to protein AGE formation in a biological sample by employing an alkyne-labeled methylglyoxal probe. We apply the method to blood and plasma to demonstrate the impact of blood cell glyoxalase activity on plasma protein AGE formation. We move on to isolate proteins modified by the MG probe and accordingly can present the first general inventory of more than 100 proteins and 300 binding sites of the methylglyoxal probe on plasma as well as erythrocytic proteins. Some of the data could be validated against a number of in vivo and in vitro targets for advanced glycation previously known from the literature; the majority of proteins and specific sites however were previously unknown and may guide future research into MG and AGE to elucidate how these are functionally linked to diabetic disease and aging.
The natural product family of macrocyclic lipodepsipeptides containing the 4-amido-2,4-pentadienoate functionality possesses intriguing cytotoxic selectivity toward hypoxic cancer cells. These subpopulations of cancer cells display increased metastatic potential and resistance to chemo- and radiotherapy. In this paper, we present studies on the mechanism of action of these natural products in hypoxic cancer cells and show that this involves rapid and hypoxia-selective collapse of mitochondrial integrity and function. These events drive a regulated cell death process that potentially could function as a powerful tool in the fight against chemo- and radiotherapy-resistant cancer cells. Toward that end, we demonstrate activity in two different mouse tumor models.
Defects in the gene encoding the persulfide dioxygenase ETHE1 are known to cause the severe inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of known clinical characteristics, the molecular mechanisms underlying the ETHE1 deficiency are still obscure. Herein, to further analyze the molecular phenotype of the disease, we applied an untargeted metabolomics approach on cultivated fibroblasts of EE patients for pinpointing alterations in metabolite levels. Metabolites, as direct signatures of biochemical functions, can decipher biochemical pathways involved in the cellular phenotype of patient cells. Using liquid chromatography-mass spectrometry-based untargeted metabolomics, we identified 18 metabolites that have altered levels in fibroblasts from EE patients. Our data demonstrate disrupted redox state in EE patient cells, which is reflected by significantly decreased level of reduced glutathione. Furthermore, the down-regulation of several intermediate metabolites such as the redox cofactors NAD(+) and NADH as well as Krebs cycle intermediates revealed clear alteration in metabolic regulation. Pantothenic acid and several amino acids exhibited decreased levels, whereas the β-citrylglutamate with a putative role in brain development had an increased level in the EE patient cells. These observations indicate the severe impact of ETHE1 deficiency on cellular physiology and redox state, meanwhile suggesting targets for experimental studies on novel treatment options for the devastating metabolic disorder.
Loss-of-function mutations in the transmembrane ABCC6 transport protein cause pseudoxanthoma elasticum (PXE), an ectopic, metabolic mineralization disorder that affects the skin, eye, and vessels. ABCC6 is assumed to mediate efflux of one or several small molecule compounds from the liver cytosol to the circulation. Untargeted metabolomics using liquid chromatography-mass spectrometry was employed to inspect liver cytosolic extracts from mice with targeted disruption of the Abcc6 gene. Absence of the ABCC6 protein induced an altered profile of metabolites in the liver causing accumulation of compounds as more features were upregulated than downregulated in ABCC6-deficient mice. However, no differences of the identified metabolites in liver could be detected in plasma, whereas urine reflected some of the changes. Of note, N-acetylated amino acids and pantothenic acid (vitamin B5), which is involved in acetylation reactions, were accumulated in the liver. None of the identified metabolites seems to explain mineralization in extrahepatic tissues, but the present study now shows that abrogated ABCC6 function does cause alterations in the metabolic profile of the liver in accordance with PXE being a metabolic disease originating from liver disturbance. Further studies of these changes and the further identification of yet unknown metabolites may help to clarify the liver-related pathomechanism of PXE.
IntroductionRemote ischemic conditioning (RIC) is a maneuver by which short non-lethal ischemic events are applied on distant organs or limbs to reduce ischemia and reperfusion injuries caused by e.g. myocardial infarct. Although intensively investigated, the specific mechanism of this protective phenomenon remains incompletely understood and in particular, knowledge on the role of small metabolites is scarce.ObjectivesIn this study, we aimed to study perturbations in the plasma metabolome following RIC and gain insight into metabolic changes by the intervention as well as to identify potential novel cardio-protective metabolites.MethodsBlood plasma samples from ten healthy males were collected prior to and after RIC and tested for bioactivity in a HL-1 based cellular model of ischemia–reperfusion damage. Following this, the plasma was analyzed using untargeted LC-qTOF-MS and regulated metabolites were identified using univariate and multivariate statistical analysis. Results were finally verified in a second plasma study from the same group of volunteers and by testing a metabolite ester in the HL-1 cell model.ResultsThe analysis revealed a moderate impact on the plasma metabolome following RIC. One metabolite, α-hydroxybutyrate (AHB) however, stood out as highly significantly upregulated after RIC. AHB might be a novel and more sensitive plasma-biomarker of transient tissue ischemia than lactate. Importantly, it was also found that a cell permeable AHB precursor protects cardiomyocytes from ischemia–reperfusion damage.ConclusionUntargeted metabolomics analysis of plasma following RIC has led to insight into metabolism during RIC and revealed a possible novel metabolite of relevance to ischemic-reperfusion damage.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-017-1202-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.