We present an approach to detecting and recognizing gestures in a stream of multi-modal data. Our approach combines a slidingwindow gesture detector with features drawn from skeleton data, color imagery, and depth data produced by a first-generation Kinect sensor. The detector consists of a set of one-versus-all boosted classifiers, each tuned to a specific gesture. Features are extracted at multiple temporal scales, and include descriptive statistics of normalized skeleton joint positions, angles, and velocities, as well as image-based hand descriptors. The full set of gesture detectors may be trained in under two hours on a single machine, and is extremely efficient at runtime, operating at 1700fps using only skeletal data, or at 100fps using fused skeleton and image features. Our method achieved a Jaccard Index score of 0.834 on the ChaLearn-2014 Gesture Recognition Test dataset, and was ranked 2nd overall in the competition.
A complete gesture recognition system should localize and classify each gesture from a given gesture vocabulary, within a continuous video stream. In this work, we compare two approaches: a method that performs the tasks of temporal segmentation and classification simultaneously with another that performs the tasks sequentially. The first method trains a single random forest model to recognize gestures from a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as out-of-vocabulary (nongesture) instances. The second method employs a cascaded approach, training a binary random forest model to distinguish gestures from background and a multi-class random forest model to classify segmented gestures. Given a test input video stream, both frameworks are applied using sliding windows at multiple temporal scales. We evaluated our formulation in segmenting and recognizing gestures from two different benchmark datasets: the NATOPS dataset of 9,600 gesture instances from a vocabulary of 24 aircraft handling signals, and the CHALEARN dataset of 7754 gesture instances from a vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the NATOPS dataset. We conclude with a discussion of the advantages of using our model for the task of gesture recognition and segmentation, and outline weaknesses which need to be addressed in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.