Early embryo mortality occurs mainly until 16 days post-conception in cattle (Diskin et al., 2016;Hill et al., 2000), and such a problem seems to be of higher occurrence for in vitro-produced (IVP) bovine embryos Bertolini, Mason et al., 2002).A higher rate of embryonic mortality seen for IVP embryos has been associated with initial growth retardation and with changes in gene
Important genomic imprinting changes usually occur following the in vitro production (IVP) of bovine embryos, especially in the imprinting pattern of components of the IGF system. This study aimed to evaluate the effects of a transient episomal overexpression of the IGF2 gene in bovine IVP embryos following embryo cytoplasmic microinjection (CMI) at the 1‐cell stage on embryo survival, early and late developmental kinetics and morphological quality up to Day 7 of development. Selected cumulus–oocyte complexes (COCs) were matured and fertilized in vitro and subsequently segregated into six experimental groups: non‐CMI control group and five CMI groups at increasing doses (0, 10, 20, 40 and 80 ng/μl) of a GFP vector built for the episomal expression of bovine IGF2. Zygote CMI was effective in delivering the expression vector into the ooplasm, irrespective of the groups, with 58% of positive GFP fluorescence in Day 7 blastocysts. Considering developmental rates and late embryo kinetics, the 10‐ng/μl CMI vector dose promoted a lower blastocyst rate (10.4%), but for blastocysts at more advanced stages of development (93.0% blastocysts and expanded blastocysts), and higher number of cells (116.0 ± 3.0) than non‐CMI controls (23.3%, 75.0% and 75.0 ± 6.8 were obtained, respectively). In conclusion, CMI at the 1‐cell stage did not compromise subsequent in vitro development of surviving embryos, with the 10‐ng/μl group demonstrating a possible growth‐promoting effect of the IGF2 gene on embryo development, from the 1‐cell to the blastocyst stage.
Summary
The objective of this study was to investigate the effects of adding β-mercaptoethanol (βME) to culture medium of bovine in vitro-produced (IVP) embryos prior to or after vitrification on embryo development and cryotolerance. In Experiment I, Day-7 IVP blastocysts were vitrified and, after warming, cultured in medium containing 0, 50 or 100 μM βME for 72 h. Embryos cultured in 100 μM βME attained higher hatching rates (66.7%) than those culture in 0 (47.7%) and 50 (52.4%) μM βME. In Experiment II, IVP embryos were in vitro-cultured (IVC) to the blastocyst stage in 0 (control) or 100 μM βME, followed by vitrification. After warming, embryos were cultured for 72 h (post-warming culture, PWC) in 0 (control) or 100 μM βME, in a 2 × 2 factorial design: (i) CTRL–CTRL, control IVC and control PWC; (ii) CTRL–βME, control IVC and βME-supplemented PWC; (iii) βME–CTRL, βME-supplemented IVC and control PWC; or (iv) βME–βME, βME-supplemented IVC and βME-supplemented PWC. βME during IVC reduced embryo development (28.0% vs. 43.8%) but, following vitrification, higher re-expansion rates were seen in βME–CTRL (84.0%) and βME–βME (87.5%) than in CTRL–CTRL (71.0%) and CTRL–βME (73.1%). Hatching rates were higher in CTRL–βME (58.1%) and βME–βME (63.8%) than in CTRL–CTRL (36.6%) and βME–CTRL (42.0%). Total cell number in hatched blastocysts was higher in βME–βME (181.2 ± 7.4 cells) than CTRL–CTRL (139.0 ± 9.9 cells). Adding βME to the IVC medium reduced development but increased cryotolerance, whereas adding βME to the PWC medium improved embryo survival, hatching rates, and total cell numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.