Dinophysis acuta and D. acuminata are associated with lipophilic toxins in Southern Chile. Blooms of the two species coincided during summer 2019 in a highly stratified fjord system (Puyuhuapi, Chilean Patagonia). High vertical resolution measurements of physical parameters were carried out during 48 h sampling to i) explore physiological status (e.g., division rates, toxin content) and ii) illustrate the fine scale distribution of D. acuta and D. acuminata populations with a focus on water column structure and cooccurring plastid-bearing ciliates. The species-specific resources and regulators defining the realized niches (sensu Hutchinson) of the two species were identified. Differences in vertical distribution, daily vertical migration and in situ division rates (with record values, 0.76 d−1, in D. acuta), in response to the environmental conditions and potential prey availability, revealed their niche differences. The Outlying Mean Index (OMI) analysis showed that the realized niche of D. acuta (cell maximum 7 × 103 cells L−1 within the pycnocline) was characterized by sub-surface estuarine waters (salinity 23 -25), lower values of turbulence and PAR, and a narrow niche breath. In contrast, the realized niche of D. acuminata (cell maximum 6.8 × 103 cells L−1 just above the pycnocline) was characterized by fresher (salinity 17 -20) outflowing surface waters, with higher turbulence and light intensity and a wider niche breadth. Results from OMI and PERMANOVA analyses of co-occurring microplanktonic ciliates were compatible with the hypothesis of species such as those from genera Pseudotontonia and Strombidium constituting an alternative ciliate prey to Mesodinium. The D. acuta cell maximum was associated with DSP (OA and Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.DTX-1) toxins and pectenotoxins; that of D. acuminata only with pectenotoxins. Results presented here contribute to a better understanding of the environmental drivers of species-specific blooms of Dinophysis and management of their distinct effects in Southern Chile. Previous article
Highlights► 48 h of high frequency physical data for co-occurring blooms of 2 Dinophysis species. ► D. acuta (exceptional µ) thin layer briefly disrupted by an increase in turbulence. ► Co-occurring D. acuminata and D. acuta blooms showed a clear niche differentiation. ► Niche analysis results compatible with putative ciliate prey other than Mesodinium. ► D. acuta maximum associated with DSP toxins (OA, DTX1), D. acuminata with PTX2 only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.