Biological processes and technological applications cannot work without liquid control, where versatile water droplet manipulation is a significant issue. Droplet motion is conventionally manipulated by functionalizing the target surface or by utilizing additives in the droplet, still, with uncontrolled limitation on superhydrophobic surfaces since droplets are either unable to move fast or are difficult to stop while moving. A controllable high‐speed “all‐in‐one” no‐loss droplet manipulation, that is, in‐plane moving and stopping/pinning in any direction on a superhydrophobic surface, with electrostatic charging is demonstrated. The experimental results reveal that the transport speed can vary from zero to several hundreds of millimeters per second. Controlled dynamic switching between the onset moving state and the offset pinning state of a water droplet can be achieved by out‐of‐plane electrostatic charging. This work opens the possibility of droplet control techniques in various applications, such as combinatory chemistry, biochemical, and medical detection.
Effective, long-range, and self-propelled water elevation and transport are important in industrial, medical, and agricultural applications. Although research has grown rapidly, existing methods for water film elevation are still limited. Scaling up for practical applications in an energy-efficient way remains a challenge. Inspired by the continuous water cross-boundary transport on the peristome surface of Nepenthes alata, here we demonstrate the use of peristome-mimetic structures for controlled water elevation by bending biomimetic plates into tubes. The fabricated structures have unique advantages beyond those of natural pitcher plants: bulk water diode transport behavior is achieved with a high-speed passing state (several centimeters per second on a milliliter scale) and a gating state as a result of the synergistic effect between peristomemimetic structures and tube curvature without external energy input. Significantly, on further bending the peristome-mimetic tube into a "candy cane"-shaped pipe, a self-siphon with liquid diode behavior is achieved. Such a transport mechanism should inspire the design of next generation water transport devices. biomimetic | capillary rise | diode | siphon | water transport
Figure 14. a) EL spectra (inset: photographs of working devices) and b) EQE versus current density (inset: current efficiency-current density curves) for DPA, pyrene, rubrene, and TIPS-pentacene doped poly(9-vinylcarbazole)-based OLEDs. c) Device energy level diagram and d) EQE versus current density curve (inset: current efficiency versus current density) for inverted rubrene-doped F8BT-based OLED device. Reproduced with permission. [83] Copyright 2017, Wiley-VCH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.