Background-Diminished cardiac vagal activity and higher heart rate predict a high mortality rate of chronic heart failure (CHF) after myocardial infarction. We investigated the effects of chronic electrical stimulation of the vagus nerve on cardiac remodeling and long-term survival in an animal model of CHF after large myocardial infarction. Methods and Results-Two weeks after the ligation of the left coronary artery, surviving rats were randomized to vagaland sham-stimulated groups. Using an implantable miniature radio-controlled electrical stimulator, we stimulated the right vagal nerve of CHF rats for 6 weeks. The intensity of electrical stimulation was adjusted for each rat, so that the heart rate was lowered by 20 to 30 beats per minute.
Steep repolarization gradient in the epicardium but not endocardium develops P2R-extrasystoles in the Brugada-ECG condition, which might degenerate into VF by further depolarization and repolarization abnormalities.
OBJECTIVEAccumulating evidence suggests that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. The anti-inflammatory, antihypertensive, and pro-proliferative effects of EETs suggest a possible beneficial role for EETs on insulin resistance and diabetes.RESEARCH DESIGN AND METHODSThis study investigated the effects of CYP2J3 epoxygenase gene therapy on insulin resistance and blood pressure in diabetic db/db mice and in a model of fructose-induced hypertension and insulin resistance in rats.RESULTSCYP2J3 gene delivery in vivo increased EET generation, reduced blood pressure, and reversed insulin resistance as determined by plasma glucose levels, homeostasis model assessment insulin resistance index, and glucose tolerance test. Furthermore, CYP2J3 treatment prevented fructose-induced decreases in insulin receptor signaling and phosphorylation of AMP-activated protein kinases (AMPKs) in liver, muscle, heart, kidney, and aorta. Thus, overexpression of CYP2J3 protected against diabetes and insulin resistance in peripheral tissues through activation of insulin receptor and AMPK pathways.CONCLUSIONSThese results highlight the beneficial roles of the CYP epoxygenase-EET system in diabetes and insulin resistance.
Although regional difference in sympathetic efferent nerve activity has been well investigated, whether this regional difference exists in the dynamic baroreflex regulation of sympathetic nerve activity remains uncertain. In anesthetized, vagotomized, and aortic-denervated rabbits, we isolated carotid sinuses and randomly perturbed intracarotid sinus pressure (CSP) while simultaneously recording cardiac (CSNA) and renal sympathetic nerve activities (RSNA). The neural arc transfer function from CSP to CSNA and that from CSP to RSNA revealed high-pass characteristics. The increasing slope of the transfer gain in the frequencies between 0.03 and 0.3 Hz was significantly greater for CSNA than for RSNA (2.96 +/- 0.72 vs. 1.64 +/- 0.73 dB/octave, P < 0.01, n = 9). The difference was hardly explained by the difference in static nonlinear characteristics of CSP-CSNA and CSP-RSNA relationships or by the difference in conduction velocities in the multifiber recording. These results indicate that the central processing in the brain stem differs between CSNA and RSNA. The neural arc of the baroreflex may exert differential effects on the heart and kidney in response to dynamic baroreflex activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.