Hydrogels, exhibiting wide applications in soft robotics, tissue engineering, implantable electronics, etc., often require sophisticately tailoring of the hydrogel mechanical properties to meet specific demands. For examples, soft robotics necessitates tough hydrogels; stem cell culturing demands various tissue‐matching modulus; and neuron probes desire dynamically tunable modulus. Herein, a strategy to broadly alter the mechanical properties of hydrogels reversibly via tuning the aggregation states of the polymer chains by ions based on the Hofmeister effect is reported. An ultratough poly(vinyl alcohol) (PVA) hydrogel as an exemplary material (toughness 150 ± 20 MJ m−3), which surpasses synthetic polymers like poly(dimethylsiloxane), synthetic rubber, and natural spider silk is fabricated. With various ions, the hydrogel's various mechanical properties are continuously and reversibly in situ modulated over a large window: tensile strength from 50 ± 9 kPa to 15 ± 1 MPa, toughness from 0.0167 ± 0.003 to 150 ± 20 MJ m−3, elongation from 300 ± 100% to 2100 ± 300%, and modulus from 24 ± 2 to 2500 ± 140 kPa. Importantly, the ions serve as gelation triggers and property modulators only, not necessarily required to remain in the gel, maintaining the high biocompatibility of PVA without excess ions. This strategy, enabling high mechanical performance and broad dynamic tunability, presents a universal platform for broad applications from biomedicine to wearable electronics.
The extraction of interstitial fluid (ISF) from skin using microneedles (MNs) has attracted growing interest in recent years due to its potential for minimally invasive diagnostics and biosensors. ISF collection by absorption into a hydrogel MN patch is a promising way that requires the materials to have outstanding swelling ability. Here, a gelatin methacryloyl (GelMA) patch is developed with an 11 × 11 array of MNs for minimally invasive sampling of ISF. The properties of the patch can be tuned by altering the concentration of the GelMA prepolymer and the crosslinking time; patches are created with swelling ratios between 293% and 423% and compressive moduli between 3.34 MPa and 7.23 MPa. The optimized GelMA MN patch demonstrates efficient extraction of ISF. Furthermore, it efficiently and quantitatively detects glucose and vancomycin in ISF in an in vivo study. This minimally invasive approach of extracting ISF with a GelMA MN patch has the potential to complement blood sampling for the monitoring of target molecules from patients.
Disorder of these physiological processes causes persistent inflammation and dys functional epithelial formation. Even tually, it leads to wound nonunion and increases the risk of infection. [2] Accu mulating evidence indicates that for accelerating diabetic wound healing, it is crucial to avoid excessive inflammation, including secretion of inflammatory fac tors in chronic wounds and inappropriate macrophage differentiation. [3] The clas sically activated macrophages (M1) and alternatively activated macrophages (M2) are two typical phenotypes of macro phages. [4] The M1 phenotype macro phages in diabetic wounds continue to release proinflammatory cytokines, such as tumor necrosis factor alpha (TNFα), which stimulate apoptosis of cells (fibro blasts, keratinocytes, and endothelial cells) and disorder collagen deposition, while M2 macrophages can accelerate fibroblast proliferation, orchestrate anti inflammatory responses, stabilize angiogenesis, and promote extracellular matrices (ECM) remodeling. [5] The ineffective transition of macrophages from M1 to M2 phenotype can lead to wound nonunion or scar formation. [6] Therefore, inducing the antiinflammatory transformation of macrophages could be a promising approach for developing clinical treatment of diabetic wounds. Diabeticwound treatment faces significant challenges in clinical settings. Alternative treatment approaches are needed. Continuous bleeding, disordered inflammatory regulation, obstruction of cell proliferation, and disturbance of tissue remodeling are the main characteristics of diabetic wound healing. Hydrogels made of either naturally derived or synthetic materials can potentially be designed with a variety of functions for managing the healing process of chronic wounds. Here, a hemostatic and anti-inflammatory hydrogel patch is designed for promoting diabetic wound healing. The hydrogel patch is derived from dual-cross-linked methacryloyl-substituted Bletilla Striata polysaccharide (B) and gelatin (G) via ultraviolet (UV) light. It is demonstrated that the B-G hydrogel can effectively regulate the M1/ M2 phenotype of macrophages, significantly promote the proliferation and migration of fibroblasts in vitro, and accelerate angiogenesis. It can boost wound closure by normalizing epidermal tissue regeneration and depositing collagen appropriately in vivo without exogenous cytokine supplementation. Overall, the B-G bioactive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.