Background Magnet wireless charging is being utilized increasingly in current generation smartphones. Apple's MagSafe is a proprietary wireless charging technology with an array of magnets that has the capacity to generate magnet fieldstrength >50 gauss (G). We hypothesize that there is clinically significant magnet interference caused by Apple's MagSafe technology on cardiac implantable electronic devices (CIED). Methods and Results This study has an in vivo and an ex vivo component. The in vivo component consists of consecutive patients who presented to the electrophysiology laboratory with previously implanted CIEDs. The iPhone 12 Pro Max was directly placed on the skin over the pocket of these patients and the effect was studied by device interrogation. For the ex vivo component of the study, CIEDs from major device companies were tested for magnetic interference caused by iPhone 12 Pro Max through unopened packages. We found that iPhone 12 Pro Max resulted in clinically identifiable magnet interference in 3/3 (100%) participants in vivo and in 8/11 (72.7%) devices ex vivo. Conclusions Apple's iPhone 12 Pro Max MagSafe technology can cause magnet interference on CIEDs and has the potential to inhibit lifesaving therapy.
Intense exercise induces pronounced hyperkalemia, followed by transient hypokalemia in recovery. We investigated whether the β agonist salbutamol attenuated the exercise hyperkalemia and exacerbated the postexercise hypokalemia, and whether hypokalemia was associated with impaired cardiac repolarization (QT hysteresis). Eleven healthy adults participated in a randomized, counterbalanced, double-blind trial receiving either 1,000 µg salbutamol (SAL) or placebo (PLAC) by inhalation. Arterial plasma potassium concentration ([K]) was measured at rest, during 3 min of intense rowing exercise, and during 60 min of recovery. QT hysteresis was calculated from ECG ( n = 8). [K] increased above baseline during exercise (rest, 3.72 ± 0.7 vs. end-exercise, 6.81 ± 1.4 mM, P < 0.001, mean ± SD) and decreased rapidly during early recovery to below baseline; restoration was incomplete at 60 min postexercise ( P < 0.05). [K] was less during SAL than PLAC (4.39 ± 0.13 vs. 4.73 ± 0.19 mM, pooled across all times, P = 0.001, treatment main effect). [K] was lower after SAL than PLAC, from 2 min preexercise until 2.5 min during exercise, and at 50 and 60 min postexercise ( P < 0.05). The postexercise decline in [K] was correlated with QT hysteresis ( r = 0.343, n = 112, pooled data, P = 0.001). Therefore, the decrease in [K] from end-exercise by ~4 mM was associated with reduced QT hysteresis by ~75 ms. Although salbutamol lowered [K] during exercise, no additive hypokalemic effects occurred in early recovery, suggesting there may be a protective mechanism against severe or prolonged hypokalemia after exercise when treated by salbutamol. This is important because postexercise hypokalemia impaired cardiac repolarization, which could potentially trigger arrhythmias and sudden cardiac death in susceptible individuals with preexisting hypokalemia and/or heart disease. NEW & NOTEWORTHY Intense rowing exercise induced a marked increase in arterial potassium, followed by a pronounced decline to hypokalemic levels. The β agonist salbutamol lowered potassium during exercise and late recovery but not during early postexercise, suggesting a protective effect against severe hypokalemia. The decreased potassium in recovery was associated with impaired cardiac QT hysteresis, suggesting a link between postexercise potassium and the heart, with implications for increased risk of cardiac arrhythmias and, potentially, sudden cardiac death.
Disturbances in plasma potassium concentration (pK) are well known risk factors for the development of cardiac arrhythmia. The aims of the present study were to evaluate the effect of hemodialysis on exercise pK dynamics and QT hysteresis, and whether QT hysteresis is associated with the pK decrease following exercise. Twenty-two end-stage renal disease patients exercised on a cycle ergometer with incremental work load before and after hemodialysis. ECG was recorded and pK was measured during exercise and recovery. During exercise, pK increased from 5.1 ± 0.2 to 6.1 ± 0.2 mM (mean ± SE; P < 0.0001) before hemodialysis and from 3.8 ± 0.1 to 5.1 ± 0.1 mM (P < 0.0001) after hemodialysis. After 2 min of recovery, pK had decreased to 5.0 ± 0.2 mM and 4.1 ± 0.1 mM (P < 0.0001) before and after hemodialysis, respectively. pK increase during exercise was accentuated after hemodialysis. The pK increase was negatively linearly correlated with pK before exercise (β = -0.21, R(2) = 0.23, P = 0.001). QT hysteresis was negatively linearly correlated with the decrease in pK during recovery (β = -28 ms/mM, R(2) = 0.36, P = 0.006). Thus, during recovery, low pK was associated with relatively longer QT interval. In conclusion, new major findings are an accentuated increase in pK during exercise after hemodialysis, an attenuated increase in pK in hyperkalemia, and an association between pK and QT interval adaptation during recovery. The acute pK shift after exercise may modulate QT interval adaptation and trigger cardiac arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.