Although chest radiographs are essential in the investigation of suspected PE, their main value is to exclude diagnoses that clinically mimic PE and to aid in the interpretation of the ventilation-perfusion scan.
There have been many remarkable advances in conventional thoracic imaging over the past decade. Perhaps the most remarkable is the rapid conversion from film-based to digital radiographic systems. Computed radiography is now the preferred imaging modality for bedside chest imaging. Direct radiography is rapidly replacing film-based chest units for in-department posteroanterior and lateral examinations. An exciting aspect of the conversion to digital radiography is the ability to enhance the diagnostic capabilities and influence of chest radiography. Opportunities for direct computer-aided detection of various lesions may enhance the radiologist's accuracy and improve efficiency. Newer techniques such as dual-energy and temporal subtraction radiography show promise for improved detection of subtle and often obscured or overlooked lung lesions. Digital tomosynthesis is a particularly promising technique that allows reconstruction of multisection images from a short acquisition at very low patient dose. Preliminary data suggest that, compared with conventional radiography, tomosynthesis may also improve detection of subtle lung lesions. The ultimate influence of these new technologies will, of course, depend on the outcome of rigorous scientific validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.