This paper describes a cold sintering process for Pb(Zr,Ti)O 3 ceramics and the associated processing-property relations. Pb(Zr,Ti)O 3 has a very small, incongruent solubility that is a challenge during cold sintering. To circumvent this, a Pb(NO 3) 2 solution was used as the transient liquid phase. A bimodal lead zirconate titanate powder was densified to a relative density of 89% by cold sintering at 300 • C and 500 MPa. After the cold sintering step, the permittivity was 200, and the dielectric loss was 2.0%. A second heat-treatment involving a 3 h anneal at 900 • C increased the relative density to 99%; the resulting relative dielectric permittivity was 1300 at room temperature and 100 kHz. The samples showed well-defined ferroelectric hysteresis loops, having a remanent polarization of 28 µC/cm 2. On poling, the piezoelectric coefficient d 33 was ∼200 pC/N. With a 700 • C 3 h post-annealing, samples show a lower room temperature relative permittivity (950 at 100 kHz), but a 24 h hold time at 700 • C produces ceramics where there is an improved relative dielectric constant (1050 at 100 kHz).
Continued reduction in length scales associated with many ferroelectric film‐based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate‐lead titanate (70PMN‐30PT) thin films were studied over the thickness range of 100‐350 nm for the relative contributions to property thickness dependence from interfacial and grain‐boundary low permittivity layers. Epitaxial PMN‐PT films were grown on SrRuO3/(001)SrTiO3, while polycrystalline films with {001}‐Lotgering factors >0.96 were grown on Pt/TiO2/SiO2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at high fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC‐biased and temperature‐dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness‐dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.