A Pb(II)-specific DNAzyme fluorescent sensor has been modified with a thiol moiety in order to immobilize it on a Au surface. Self-assembly of the DNAzyme is accomplished by first adsorbing the single-thiolated enzyme strand (HS-17E-Dy) followed by adsorption of mercaptohexanol, which serves to displace any Au-N interactions and ensure that DNA is bound only through the Sheadgroup. The preformed self-assembled monolayer is then hybridized with the complementary fluorophorecontaining substrate strand (17DS-Fl). Upon reaction with Pb(II), the substrate strand is cleaved, releasing a fluorescent fragment for detection. Fluorescence intensity may be correlated with original Pb(II) concentration, and a linear calibration was obtained over nearly four decades: 10 µM g [Pb(II)] g 1 nM. The immobilized DNAzyme is
A Pb(ii)-specific DNAzyme has been successfully incorporated into Au-coated polycarbonate track-etched (PCTE) nanocapillary array membranes (NCAMs) by thiol-gold immobilization. Incorporation of the DNAzyme into the membrane provides a substrate-bound sensor using a novel internal control methodology for fluorescence-based detection of Pb(ii). A non-cleavable substrate strand, identical to the cleavable DNAzyme substrate strand except the RNA-base is replaced by the corresponding DNA-base, is used for ratiometric comparison of intensities. The cleavable substrate strand is labeled with fluorescein, and the non-cleavable strand is labeled with a red fluorophore (Cy5 or Alexa 546) for detection after release from the membrane surface. This internal standard based ratiometric method allows for real-time monitoring of Pb(ii)-induced cleavage, as well as standardizing variations in substrate size, solution detection volume, and monolayer density. The result is a Pb(ii)-sensing structure that can be stored in a prepared state for 30 days, regenerated after reaction, and detect Pb(ii) concentrations as low as 17 nM (3.5 ppb).
Interfacing nanoscale elements into a microfluidic device enables a new range of fluidic manipulations. Nanocapillary array membranes (NCAMs), consisting of thin (5 microm < d < 20 microm) membranes containing arrays of nanometer diameter (10 nm < a < 500 nm) pores, are a convenient method of interfacing vertically separated microchannels in microfluidic devices that allow the external control of analyte transport between microfluidic channels. To add functionality to these nanopores beyond simple fluid transport, here we incorporate an antibody-based molecular recognition element onto the pore surface that allows selective capture, purification, and release of specific analytes from a mixture. The pores are fabricated by electroless plating of gold into the nanopores of an NCAM (Au-NCAM). An antibody is then immobilized on the Au-NCAM via gold-thiol chemistry as a thiolated fragment of antigen-binding (Fab') prepared by direct digestion of the antibody followed by reduction of the disulfide linkage on the hinge region. The successful immobilization and biological activity of the resultant Fab' through this protocol is verified on planar gold by fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. Selective capture and release of human insulin is verified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The relative mass spectral peak intensities for insulin versus nonantigenic peptides increase more than 20-fold after passing through the Fab'-Au-NCAM relative to the control Au-NCAM. The affinity-tagged Au-NCAM can be incorporated into microfluidic devices to allow the concentration, capture, and characterization of analytes in complex mixtures with high specificity.
A series of ferrocenyl surfactants was tested as model compounds to study electron transfer reactions involving structural Fe(III) in clay minerals. The surfactants contain trimethylammonium headgroups, ferrocene tail groups, and intervening hydrocarbon chain lengths of one, six, or 11 carbons. Two factors considered to be decisive for electron transfer were addressed: (1) physical access of the surfactant ferrocene to the reactive sites through hexagonal holes in the clay lattice by X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) and (2) thermodynamic favorability of the overall oxidation/reduction reaction based on experimentally determined oxidation/reduction potentials. In suspensions of clay with the longer chain surfactants, (ferrocenylhexyl)trimethylammonim (FHTMA+) and (ferrocenylundecyl)trimethylammonium (FUTMA+), where electron transfer may be expected to be favored by both factors, physical accessibility, and thermodynamic favorability, ferroecene oxidation was observed by diffuse reflectance infrared spectroscopy (DRIFT), ultraviolet-visible spectroscopy (UV-vis), and visual color changes. In contrast, the shorter chain length surfactant, (ferrocenylmethyl)trimethylammonium (FMTMA+), did not participate in electron transfer with the clay, as substantiated by UV-vis and no visible color changes. Rigid conformation and/or higher oxidation/reduction potential than clay Fe can accountforthe lack of reaction. The utility and limitations of using these surfactants as model compounds is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.