A Pb(II)-specific DNAzyme fluorescent sensor has been modified with a thiol moiety in order to immobilize it on a Au surface. Self-assembly of the DNAzyme is accomplished by first adsorbing the single-thiolated enzyme strand (HS-17E-Dy) followed by adsorption of mercaptohexanol, which serves to displace any Au-N interactions and ensure that DNA is bound only through the Sheadgroup. The preformed self-assembled monolayer is then hybridized with the complementary fluorophorecontaining substrate strand (17DS-Fl). Upon reaction with Pb(II), the substrate strand is cleaved, releasing a fluorescent fragment for detection. Fluorescence intensity may be correlated with original Pb(II) concentration, and a linear calibration was obtained over nearly four decades: 10 µM g [Pb(II)] g 1 nM. The immobilized DNAzyme is
Going for double gold: Precise control of the positions of and distances between gold nanoparticles (AuNP; gold spheres in picture) is achieved by linking the AuNPs to phosphorothioate‐modified DNA (green and red helices) with a bifunctional fastener. The distance between AuNPs is controlled simply by changing the position of the modifications on the DNA template.
A Pb(ii)-specific DNAzyme has been successfully incorporated into Au-coated polycarbonate track-etched (PCTE) nanocapillary array membranes (NCAMs) by thiol-gold immobilization. Incorporation of the DNAzyme into the membrane provides a substrate-bound sensor using a novel internal control methodology for fluorescence-based detection of Pb(ii). A non-cleavable substrate strand, identical to the cleavable DNAzyme substrate strand except the RNA-base is replaced by the corresponding DNA-base, is used for ratiometric comparison of intensities. The cleavable substrate strand is labeled with fluorescein, and the non-cleavable strand is labeled with a red fluorophore (Cy5 or Alexa 546) for detection after release from the membrane surface. This internal standard based ratiometric method allows for real-time monitoring of Pb(ii)-induced cleavage, as well as standardizing variations in substrate size, solution detection volume, and monolayer density. The result is a Pb(ii)-sensing structure that can be stored in a prepared state for 30 days, regenerated after reaction, and detect Pb(ii) concentrations as low as 17 nM (3.5 ppb).
Up to 4 Cs or Rb atoms per 32 Si atoms can be incorporated into the channels of the all-silica (SiO 2 ) zeolites ITQ-4 and beta with effective oxidation states of zero. The optical properties and 29 Si MAS NMR spectra suggest partial or complete ionization within the channels to yield M + ions and relatively free electrons. This view is supported by a published structural model (
Due to the numerous toxicological effects of lead, its presence in the environment needs to be effectively monitored. Incorporating a biosensing element within a microfluidic platform enables rapid and reliable determinations of lead at trace levels. A microchip-based lead sensor is described here that employs a lead-specific DNAzyme (also called catalytic DNA or deoxyribozyme) as a recognition element that cleaves its complementary substrate DNA strand only in the presence of cationic lead (Pb(2+)). Fluorescent tags on the DNAzyme translate the cleavage events to measurable, optical signals proportional to Pb(2+) concentration. The DNAzyme responds sensitively and selectively to Pb(2+), and immobilizing DNAzyme in the sensor permits both sensor regeneration and localization of the detection zone. Here, the DNAzyme has been immobilized on a PMMA surface using the highly specific biotin-streptavidin interaction. The strategy includes using streptavidin physisorbed on a PMMA surface to immobilize DNAzyme both on planar PMMA and on the walls of a PMMA microfluidic device. The immobilized DNAzyme retains its Pb(2+) detection activity in the microfluidic device and can be regenerated and reused. The DNAzyme shows no response to other common metal cations and the presence of these contaminants does not interfere with the lead-induced fluorescence signal. While prior work has shown lead-specific catalytic DNA can be used in its solubilized form and while attached to gold substrates to quantitate Pb(2+) in solution, this is the first use of the DNAzyme immobilized within a microfluidic platform for real time Pb(2+) detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.