The intensity and spatial distribution of functional activation in the left precentral and postcentral gyri during actual motor performance (MP) and mental representation [motor imagery (MI)] of self-paced finger-to-thumb opposition movements of the dominant hand were investigated in fourteen right-handed volunteers by functional magnetic resonance imaging (fMRI) techniques. Significant increases in mean normalized fMRI signal intensities over values obtained during the control (visual imagery) tasks were found in a region including the anterior bank and crown of the central sulcus, the presumed site of the primary motor cortex, during both MP (mean percentage increase, 2.1%) and MI (0.8%). In the anterior portion of the precentral gyrus and the postcentral gyrus, mean functional activity levels were also increased during both conditions (MP, 1.7 and 1.2%; MI, 0.6 and 0.4%, respectively). To locate activated foci during MI, MP, or both conditions, the time course of the signal intensities of pixels lying in the precentral or postcentral gyrus was plotted against single-step or double-step waveforms, where the steps of the waveform corresponded to different tasks. Pixels significantly (r > 0.7) activated during both MP and MI were identified in each region in the majority of subjects; percentage increases in signal intensity during MI were on average 30% as great as increases during MP. The pixels activated during both MP and MI appear to represent a large fraction of the whole population activated during MP. These results support the hypothesis that MI and MP involve overlapping neural networks in perirolandic cortical areas.
Functional magnetic resonance imaging was used to assess the cortical areas active during the observation of mouth actions performed by humans and by individuals belonging to other species (monkey and dog). Two types of actions were presented: biting and oral communicative actions (speech reading, lip-smacking, barking). As a control, static images of the same actions were shown. Observation of biting, regardless of the species of the individual performing the action, determined two activation foci (one rostral and one caudal) in the inferior parietal lobule and an activation of the pars opercularis of the inferior frontal gyrus and the adjacent ventral premotor cortex. The left rostral parietal focus (possibly BA 40) and the left premotor focus were very similar in all three conditions, while the right side foci were stronger during the observation of actions made by conspecifics. The observation of speech reading activated the left pars opercularis of the inferior frontal gyrus, the observation of lip-smacking activated a small focus in the pars opercularis bilaterally, and the observation of barking did not produce any activation in the frontal lobe. Observation of all types of mouth actions induced activation of extrastriate occipital areas. These results suggest that actions made by other individuals may be recognized through different mechanisms. Actions belonging to the motor repertoire of the observer (e.g., biting and speech reading) are mapped on the observer's motor system. Actions that do not belong to this repertoire (e.g., barking) are essentially recognized based on their visual properties. We propose that when the motor representation of the observed action is activated, the observer gains knowledge of the observed action in a "personal" perspective, while this perspective is lacking when there is no motor activation.
A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of “critical mass” of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research.
Anticipation of pain is a complex state that may influence the perception of subsequent noxious stimuli. We used functional magnetic resonance imaging (fMRI) to study changes of activity of cortical nociceptive networks in healthy volunteers while they expected the somatosensory stimulation of one foot, which might be painful (subcutaneous injection of ascorbic acid) or not. Subjects had no previous experience of the noxious stimulus. Mean fMRI signal intensity increased over baseline values during anticipation and during actual stimulation in the putative foot representation area of the contralateral primary somatosensory cortex (SI). Mean fMRI signals decreased during anticipation in other portions of the contralateral and ipsilateral SI, as well as in the anteroventral cingulate cortex. The activity of cortical clusters whose signal time courses showed positive or negative correlations with the individual psychophysical pain intensity curve was also significantly affected during the waiting period. Positively correlated clusters were found in the contralateral SI and bilaterally in the anterior cingulate, anterior insula, and medial prefrontal cortex. Negatively correlated clusters were found in the anteroventral cingulate bilaterally. In all of these areas, changes during anticipation were of the same sign as those observed during pain but less intense ( approximately 30-40% as large as peak changes during actual noxious stimulation). These results provide evidence for top-down mechanisms, triggered by anticipation, modulating cortical systems involved in sensory and affective components of pain even in the absence of actual noxious input and suggest that the activity of cortical nociceptive networks may be directly influenced by cognitive factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.