The intensity and spatial distribution of functional activation in the left precentral and postcentral gyri during actual motor performance (MP) and mental representation [motor imagery (MI)] of self-paced finger-to-thumb opposition movements of the dominant hand were investigated in fourteen right-handed volunteers by functional magnetic resonance imaging (fMRI) techniques. Significant increases in mean normalized fMRI signal intensities over values obtained during the control (visual imagery) tasks were found in a region including the anterior bank and crown of the central sulcus, the presumed site of the primary motor cortex, during both MP (mean percentage increase, 2.1%) and MI (0.8%). In the anterior portion of the precentral gyrus and the postcentral gyrus, mean functional activity levels were also increased during both conditions (MP, 1.7 and 1.2%; MI, 0.6 and 0.4%, respectively). To locate activated foci during MI, MP, or both conditions, the time course of the signal intensities of pixels lying in the precentral or postcentral gyrus was plotted against single-step or double-step waveforms, where the steps of the waveform corresponded to different tasks. Pixels significantly (r > 0.7) activated during both MP and MI were identified in each region in the majority of subjects; percentage increases in signal intensity during MI were on average 30% as great as increases during MP. The pixels activated during both MP and MI appear to represent a large fraction of the whole population activated during MP. These results support the hypothesis that MI and MP involve overlapping neural networks in perirolandic cortical areas.
Temporal and intensity coding of pain in human cortex. J. Neurophysiol. 80:3312-3320, 1998. We used a high-resolution functional magnetic resonance imaging (fMRI) technique in healthy right-handed volunteers to demonstrate cortical areas displaying changes of activity significantly related to the time profile of the perceived intensity of experimental somatic pain over the course of several minutes. Twenty-four subjects (ascorbic acid group) received a subcutaneous injection of a dilute ascorbic acid solution into the dorsum of one foot, inducing prolonged burning pain (peak pain intensity on a 0-100 scale: 48 +/- 3, mean +/- SE; duration: 11.9 +/- 0.8 min). fMRI data sets were continuously acquired for approximately 20 min, beginning 5 min before and lasting 15 min after the onset of stimulation, from two sagittal planes on the medial hemispheric wall contralateral to the stimulated site, including the cingulate cortex and the putative foot representation area of the primary somatosensory cortex (SI). Neural clusters whose fMRI signal time courses were positively or negatively correlated (P < 0.0005) with the individual pain intensity curve were identified by cross-correlation statistics in all 24 volunteers. The spatial extent of the identified clusters was linearly related (P < 0.0001) to peak pain intensity. Regional analyses showed that positively correlated clusters were present in the majority of subjects in SI, cingulate, motor, and premotor cortex. Negative correlations were found predominantly in medial parietal, perigenual cingulate, and medial prefrontal regions. To test whether these neural changes were due to aspecific arousal or emotional reactions, related either to anticipation or presence of pain, fMRI experiments were performed with the same protocol in two additional groups of volunteers, subjected either to subcutaneous saline injection (saline: n = 16), inducing mild short-lasting pain (peak pain intensity 23 +/- 4; duration 2.8 +/- 0.6 min) or to nonnoxious mechanical stimulation of the skin (controls: n = 16) at the same body site. Subjects did not know in advance which stimulus would occur. The spatial extent of neural clusters whose signal time courses were positively or negatively correlated with the mean pain intensity curve of subjects injected with ascorbic acid was significantly larger (P < 0.001) in the ascorbic acid group than both saline and controls, suggesting that the observed responses were specifically related to pain intensity and duration. These findings reveal distributed cortical systems, including parietal areas as well as cingulate and frontal regions, involved in dynamic encoding of pain intensity over time, a process of great biological and clinical relevance.
To investigate whether motor imagery involves ipsilateral cortical regions, we studied haemodynamic changes in portions of the motor cortex of 14 right-handed volunteers during actual motor performance (MP) and kinesthetic motor imagery (MI) of simple sequences of unilateral left or right finger movements, using functional magnetic resonance imaging (fMRI). Increases in mean normalized fMRI signal intensities over values obtained during the control (visual imagery) task were found during both MP and MI in the posterior part of the precentral gyrus and supplementary motor area, both on the contralateral and ipsilateral hemispheres. In the left lateral premotor cortex, fMRI signals were increased during imagery of either left or right finger movements. Ipsilateral cortical clusters displaying fMRI signal changes during both MP and MI were identified by correlation analyses in 10 out of 14 subjects; their extent was larger in the left hemisphere. A larger cortical population involved during both contralateral MP and MI was found in all subjects. The overall spatial extent of both the contralateral and the ipsilateral MP + MI clusters was approximately 90% of the whole cortical volume activated during MP. These results suggest that overlapping neural networks in motor and premotor cortex of the contralateral and ipsilateral hemispheres are involved during imagery and execution of simple motor tasks.
The energetics of muscular exercise at steady state is tightly coupled to, and dependent on, the events that occurred during the transient phase, of which the steady-state is therefore the "memory". The aim of the present study is to show that it is possible to utilize data obtained at exercise steady state to gain information on variables traditionally assessed during exercise transients. A theoretical model based on the steady-state relationships between mechanical power, O(2) uptake (VO(2)) and phosphocreatine (PC) split allows us to highlight three interdependent parameters: the time constant of the VO(2) on response at the muscular level (tau), the mechanical equivalent of PC splitting and the P/O(2) ratio. The model was applied to experimental data obtained during moderate calf exercise in humans inside an MR unit. For a P/O(2) from 5.6 to 6.2, the obtained tau values range from 10.6 to 24.9 s (for PC concentrations from 17.8 to 37.7 mmol/kg fresh muscle), and the corresponding mechanical equivalents of PC from 9.6 to 10.6 J/mmol. The analysis also shows that the time constant of the O(2) uptake kinetics is strictly dependent on the PC concentration at rest, whereas the mechanical equivalent of PC is unaffected by its concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.