Thanks to evolving cellular telecommunication networks, providers can deploy a wide range of services. Soon, 5G mobile networks will be available to handle all types of services and applications for vast numbers of users through their mobile equipment. To effectively manage new 5G systems, end-to-end (E2E) performance analysis and optimization will be key features. However, estimating the end-user experience is not an easy task for network operators. The amount of end-user performance information operators can measure from the network is limited, complicating this approach. Here we explore the calculation of service metrics [known as key quality indicators (KQIs)] from classic low-layer measurements and parameters. We propose a complete machine-learning (ML) modeling framework. This system's low-layer metrics can be applied to measure service-layer performance. To assess the approach, we implemented and evaluated the proposed system on a real cellular network testbed.
The use of multimedia content has hugely increased in recent times, becoming one of the most important services for the users of mobile networks. Consequently, network operators struggle to optimize their infrastructure to support the best video service-provision. As an additional challenge, 5G introduces the concept of network slicing as a new paradigm that presents a completely different view of the network configuration and optimization. A main challenge of this scheme is to establish which specific resources would provide the necessary quality of service for the users using the slice. To address this, the present work presents a complete framework for this support of the slice negotiation process through the estimation of the provided Video Streaming Key Quality Indicators (KQIs), which are calculated from network low-layer configuration parameters and metrics. The proposed estimator is then evaluated in a real cellular scenario.
Cloud Gaming is a cutting-edge paradigm in the video game provision where the graphics rendering and logic are computed in the cloud. This allows a user’s thin client systems with much more limited capabilities to offer a comparable experience with traditional local and online gaming but using reduced hardware requirements. In contrast, this approach stresses the communication networks between the client and the cloud. In this context, it is necessary to know how to configure the network in order to provide service with the best quality. To that end, the present work defines a novel framework for Cloud Gaming performance evaluation. This system is implemented in a real testbed and evaluates the Cloud Gaming approach for different transport networks (Ethernet, WiFi, and LTE (Long Term Evolution)) and scenarios, automating the acquisition of the gaming metrics. From this, the impact on the overall gaming experience is analyzed identifying the main parameters involved in its performance. Hence, the future lines for Cloud Gaming QoE-based (Quality of Experience) optimization are established, this way being of configuration, a trendy paradigm in the new-generation networks, such as 4G and 5G (Fourth and Fifth Generation of Mobile Networks).
Aircrafts fully rely in a wide variety of electronic systems: sensors, navigation equipment, representation screens and communication elements. The interconnection of these avionics implies a huge challenge for the aircraft communication networks. Extremely stringent requirements in terms of reliability and predictability have to be provided for a safe operation. There are also important limitations to recreate those networks in a prototype form, due to the costs of the related equipment and the interest of testing different architectures and possible configurations dynamically. Moreover, performance estimation approaches based solely on network calculus provide limits for worst-case scenarios, without generating a detailed feedback under different circumstances and configurations of the network and different data sources. In this context, the present work proposes and develops an evaluation framework for avionics networks in order to support the verification and validation (V&V) procedures of the communication system before applying for certification. The proposed framework implements an event-based simulator in Simulink for Avionics Full-Duplex Switched Ethernet (AFDX), one of the most extended data protocols for avionics. This is evaluated in comparison with network calculus and bibliography performance estimation approaches, demonstrating its accuracy and capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.