Hydrogels have been extensively explored for biomedical applications due to their ability to absorb high water content in its structure, which gives excellent biocompatibility. This work aims at obtaining biocompatible hydrogels with potential for use in increasing the mechanical strength of bone substitutes, or controlled drug release. Poly (N-vinyl-2-pyrrolidone) hydrogels were prepared by free radical polymerization with and without the addition of acrylic acid. Azobisisobutyronitrile and ammonium persulfate were used as initiator and N,N-methylenebisacrylamide was used as the crosslinking agent. The characterization of the hydrogels was performed by thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy and swelling properties. The results obtained demonstrate different degrees of crosslinking and swelling of up to 490 ± 30%. The different properties of the hydrogels suggest different applications.
Calcium phosphate cements used as bone substitutes generally have low mechanical strength compared with the bones of the human body. To solve these needs, we have incorporated hydrogels in the manufacture of samples made of alpha-tricalcium phosphate (α-TCP) cement, developing a system of dual-setting cement. This study aimed to produce composite materials by combining α-TCP powder and hydrogels. The composites were prepared using the synthesized powder and four different formulations of hydrogels, using either poly(N-vinyl-2-pyrrolidone) or poly(N-vinyl-2-pyrrolidone-co-acrylic acid), with either azobisisobutyronitrile or ammonium persulfate as initiator. The properties of all composites were evaluated through measuring compressive strength and apparent density and through X-ray diffraction and scanning electron microscopy. The composites showed compressive strengths of around 24 MPa. Soaking the samples in simulated body fluid formed a layer of hydroxyapatite-like crystals on the surface of some samples, showing the bioactivity of the newly developed cements and their potential use as biomaterial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.