Bat acoustic libraries are important tools that assemble echolocation calls to allow the comparison and discrimination to confirm species identifications. The Sonozotz project represents the first nation‐wide library of bat echolocation calls for a megadiverse country. It was assembled following a standardized recording protocol that aimed to cover different recording habitats, recording techniques, and call variation inherent to individuals. The Sonozotz project included 69 species of echolocating bats, a high species richness that represents 50% of bat species found in the country. We include recommendations on how the database can be used and how the sampling methods can be potentially replicated in countries with similar environmental and geographic conditions. To our knowledge, this represents the most exhaustive effort to date to document and compile the diversity of bat echolocation calls for a megadiverse country. This database will be useful to address a range of ecological questions including the effects of anthropogenic activities on bat communities through the analysis of bat sound.
Endotherm homeotherms deal with the energetic cost of maintaining a stable body temperature (Tb) in ecosystems differing in ambient temperature (Ta). In response, animals adjust some of their thermal energetics to meet the energy requirements of thermoregulation. Bats are small mammals with a geographical distribution that may include environments with different Ta. Therefore, these animals should adjust their thermal energetics depending on the environmental characteristics of the habitats where they live. Using open-flow respirometry, we measured basal metabolic rate (BMR), thermal conductance (C’), lower and upper critical temperatures (TLC and TUC), and breadth of the thermoneutral zone (TNZb) of the cave myotis (Myotis velifer (Allen, 1890)) living in a coniferous forest versus a tropical deciduous forest in central Mexico. To our knowledge, this is the first attempt to measure thermal energetics at the intraspecific level in populations measured at the same time. Bats from the coniferous forest had lower BMR, C’, TLC, TUC, and a wider TNZb than bats from the tropical deciduous forest. The results we found here are likely the consequence of the differences between the energy demands imposed by Ta where the animals roost, and the Ta and prey availability of their foraging areas. These differences may help individuals regulate their heat production and dissipation to maintain low thermoregulatory costs in the places they inhabit.
Four bat species are reported for the first time in Morelos: Centurio senex, Lasiurus intermedius, Myotis fortidens and Nyctinomops macrotis, which were captured at the Tropical Dry Forest (TDF) of the Sierra de Huautla Biosphere Reserve (SHBR). Furthermore, 9 additional bat species that were previously unconfirmed in the SHBR are recorded. External morphometric data of the captured individuals is provided, as well as details regarding the sampling dates and sites and, when possible, information about echolocation sequences. The list of bat species in the SHBR has increased to 41 species (71% of the bat fauna in Morelos), which highlights the value of this area for protecting the biodiversity of Morelos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.