Background: The transcription factor pituitary-1 (Pit-1) is mainly expressed in the pituitary gland, where it has critical roles in cell differentiation and as a transcriptional factor for GH and prolactin (PRL). It is also expressed in human extrapituitary tissues (placenta, lymphoid and haematopoietic tissues) and cell lines (human breast adenocarcinoma cells, MCF-7). Despite the widely suggested roles of GH and PRL in the progression of proliferative mammary disorders, Pit-1 expression in human mammary gland has not yet been reported. Objective: To evaluate the expression of Pit-1 in human breast and, using the MCF-7 cell line, to investigate whether Pit-1 overexpression regulates GH expression and increases cell proliferation. Methods: Using real-time RT-PCR, western blotting and immunohistochemistry, we evaluated the expression of Pit-1 mRNA and protein in seven normal human breasts and 14 invasive ductal mammary carcinomas. GH regulation by Pit-1 in MCF-7 cells was evaluated using RT-PCR, western blotting, ELISA and transfection assays. Cell proliferation was evaluated using bromodeoxyuridine. Results: We found expression of Pit-1 mRNA and protein in both normal and tumorous human breast. We also found that Pit-1 mRNA levels were significantly increased in breast carcinoma compared with normal breast. In MCF-7 cells, Pit-1 overexpression increased GH mRNA and protein concentrations and significantly increased cell proliferation. Conclusions: These findings indicate that Pit-1 is expressed in human breast, that it regulates endogenous human mammary GH secretion, and that it increases cell proliferation. This suggests that, depending on its level of expression, Pit-1 may be involved in normal mammary development, breast disorders, or both.
Vitamin D through its receptor (VDR) plays a major role in bone mineral metabolism. However, VDR is also present in a variety of cell lines as well as in numerous tissues, suggesting other functions of the hormone beyond bone metabolism and mineral homeostasis. At the liver level, it has been shown that vitamin D induces numerous changes (i.e. enzyme activity level, stimulation of some metabolic pathways and stimulation of the normal liver recovery after partial hepatectomy). However, some works did not find VDR in the liver, and also used liver tissue as a negative control of VDR gene expression. In this paper, we examined fetal, neonatal and adult rat tissues for the presence of VDR using a sensitive RT-PCR technique and immunohistochemistry. We found VDR mRNA and VDR protein in rat liver at all different periods of rat life. Thus, we suggest that some of the actions of vitamin D on liver could be mediated at the genomic level through the VDR, and that the use of this tissue as a negative control of VDR gene expression is clearly inappropriate.
GH expression in mammary tumors has been related to the increase and spreading of cell proliferation. Using the MCF-7 human breast adenocarcinoma cell line, it has been demonstrated that autocrine GH-stimulated mammary carcinoma cell proliferation decreased the apoptosis rate and enhanced cell spreading. Surprisingly, no data are available about the presence of Pit-1 (the main pituitary regulator of GH) or GH expression in this cell line.Using RT-PCR, Western blot and immunohistochemistry, we have demonstrated the presence of both mRNA coding Pit-1 and GH as well as Pit-1 and GH protein in the MCF-7 cell line. These data could imply that Pit-1 may be an adequate target to inhibit breast cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.