Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational pre-clinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and “Triple-negative” (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward “credentialing” of PDX models as surrogates to represent individual patients for use in pre-clinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.
Purpose Anti-endocrine therapy remains the most effective treatment for ER+ breast cancer, but development of resistance is a major clinical complication. Effective targeting of mechanisms that control the loss of ER dependency in breast cancer remains elusive. We analyzed breast cancer-associated fibroblasts (CAFs), the largest component of the tumor microenvironment, as a factor contributing to ER expression levels and anti-endocrine resistance. Experimental Design Tissues from ER+ breast cancer patients were analyzed for the presence of CD146 positive (CD146pos) and CD146 negative (CD146neg) fibroblasts. ER dependent proliferation and tamoxifen sensitivity were evaluated in ER+ tumor cells co-cultured with CD146pos or CD146neg fibroblasts. RNAseq was used to develop a high confidence gene signature that predicts for disease recurrence in tamoxifen treated patients with ER+ breast cancer. Results We demonstrate that ER+ breast cancers contain two CAF subtypes defined by CD146 expression. CD146neg CAFs suppress ER expression in ER+ breast cancer cells, decrease tumor cell sensitivity to estrogen, and increase tumor cell resistance to tamoxifen therapy. Conversely, the presence of CD146pos CAFs maintains ER expression in ER+ breast cancer cells and sustains estrogen-dependent proliferation and sensitivity to tamoxifen. Conditioned media from CD146pos CAFs with tamoxifen-resistant breast cancer cells is sufficient to restore tamoxifen sensitivity. Gene expression profiles of patient breast tumors with predominantly CD146neg CAFs correlate with inferior clinical response to tamoxifen and worse patient outcomes. Conclusions Our data suggest that CAF composition contributes to treatment response and patient outcomes in ER+ breast cancer, and should be considered a target for drug development.
Androgen receptor (AR) is expressed in 90% of estrogen receptor alpha positive (ER+) breast tumors, but its role in tumor growth and progression remains controversial. Use of two anti-androgens that inhibit AR nuclear localization, enzalutamide and MJC13, revealed that AR is required for maximum ER genomic binding. Here, a novel global examination of AR chromatin binding found that estradiol induced AR binding at unique sites compared to dihydrotestosterone (DHT). Estradiol-induced AR binding sites were enriched for estrogen response elements and had significant overlap with ER binding sites. Furthermore, AR inhibition reduced baseline and estradiol-mediated proliferation in multiple ER+/AR+ breast cancer cell lines, and synergized with tamoxifen and fulvestrant. In vivo, enzalutamide significantly reduced viability of tamoxifen-resistant MCF7 xenograft tumors and an ER+/AR+ patient-derived model. Enzalutamide also reduced metastatic burden following cardiac injection. Lastly, in a comparison of ER+/AR+ primary tumors versus patient-matched local recurrences or distant metastases, AR expression was often maintained even when ER was reduced or absent. These data provide pre-clinical evidence that anti-androgens that inhibit AR nuclear localization affect both AR and ER, and are effective in combination with current breast cancer therapies. In addition, single agent efficacy may be possible in tumors resistant to traditional endocrine therapy, since clinical specimens of recurrent disease demonstrate AR expression in tumors with absent or refractory ER. Implications This study suggests that AR plays a previously-unrecognized role in supporting E2-mediated ER activity in ER+/AR+ breast cancer cells, and that enzalutamide may be an effective therapeutic in ER+/AR+ breast cancers.
Mammalian skeletal muscles are a mosaic of different fiber types largely defined by differential myosin heavy chain (MyHC) expression. Little is known about the molecular mechanisms regulating expression of the MyHC gene family members in different fiber types. In this work, we identified several cis-and trans-elements that regulate expression of the three adult fast MyHC genes. Despite multiple DNA-binding motifs for well characterized muscle transcription factors upstream of all three fast MyHC genes, expression of MyoD/Myf-5, calcineurin, or NFAT3 had different effects on the three promoters. MyoD or Myf-5 overexpression preferentially activated the IIb promoter, whereas NFAT or activated calcineurin overexpression preferentially activated the IIa promoter. Calcineurin had a 50 -100-fold stimulatory effect on the IIa promoter, and the known downstream effectors of calcineurin (myocyte enhancer factor-2 and NFAT) cannot completely account for this activation. Finally, we identified two elements critical for regulating MyHC-IId/x expression: a 130-base pair enhancer element and a CArG-like element that inhibited IId/x promoter activity in vitro. Thus, we have found specific regulatory pathways that are distinct for the three adult fast MyHC genes. These elements are logical candidates for fiber-specific control of skeletal muscle gene expression in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.