The Swiss Centre for Antibiotic Resistance (ANRESIS) has recently noted an increase of extended-spectrum cephalosporin-resistant (ESC-R) S. sonnei isolates nationwide (3.8% in 2016 vs. 37.5% in 2019). To understand this phenomenon, we analyzed 25 representative isolates (of which 14 ESC-R) collected in Switzerland during 2016-2019. Whole-genome sequencing was achieved using both Illumina and Nanopore platforms. Both ESC-R and susceptible isolates belonged to ST152. The ESC-R isolates carried blaCTX-M-3 in IncI1-pST57 (n=5), blaCTX-M-15 in IncFII (F2:A-:B-) (n=5), blaCTX-M-15 in IncI1-pST16, and blaCTX-M-27, blaCTX-M-55, or blaCTX-M-134 in other IncFII plasmids (n=1 each). Plasmids having the same bla and Inc group exhibited high genetic identity to each other, but also to plasmids previously reported in other Enterobacterales. Core-genome analysis showed that there were 4 main clusters, each of which included strains that differed by <58 SNVs, both blaCTX-M-positive and blaCTX-M-negative isolates. Moreover, most isolates belonging to the same cluster shared an identical cgST. For instance, cluster-1 included 4 isolates of cgST113036, of which only 3 harbored the IncI1-pST57 blaCTX-M-3-positive plasmid. The 25 S. sonnei isolates were also subjected to phylogenetic comparison with deposited international strains. As a result, matching isolates (same cgST and differing by <8 SNVs) have been reported in the UK, USA, France, and the Netherlands. Overall, our results suggest that some common S. sonnei clusters can spread between continents and can be imported into other nations after international trips. Such clusters include, in part, isolates that do not possess blaESBL-harboring plasmids, indicating their tendency to acquire them from other Enterobacterales.
Tick-borne encephalitis virus (TBEV) is the causative agent of human TBE, a severe infection that can cause long-lasting neurologic sequelae. Langat virus (LGTV), which is closely related to TBEV, has a low virulence for human hosts and has been used as a live vaccine against TBEV. Tick-borne encephalitis by natural infection of LGTV in humans has not been described, but one of 18,500 LGTV vaccinees developed encephalitis. The pathogenetic mechanisms of TBEV are poorly understood and, currently, no effective therapy is available. We developed an infant rat model of TBE using LGTV as infective agent. Infant Wistar rats were inoculated intracisternally with 10 focus-forming units of LGTV and assessed for clinical disease and neuropathologic findings at Days 2, 4, 7, and 9 after infection. Infection with LGTV led to gait disturbance, hypokinesia, and reduced weight gain or weight loss. Cerebrospinal fluid concentrations of RANTES, interferon-γ, interferon-β, interleukin-6, and monocyte chemotactic protein-1 were increased in infected animals. The brains of animals with LGTV encephalitis exhibited characteristic perivascular inflammatory cuffs and glial nodules; immunohistochemistry documented the presence of LGTV in the thalamus, hippocampus, midbrain, frontal pole, and cerebellum. Thus, LGTV meningoencephalitis in infant rats mimics important clinical and histopathologic features of human TBE. This new model provides a tool to investigate disease mechanisms and to evaluate new therapeutic strategies against encephalitogenic flaviviruses.
Oligosaccharides present on the surface of pathogenic bacteria play an important role in their interaction with their host. Bacteria with altered cell surface structures can be used to study these interactions, and glycoengineering represents a tool to display a glycoepitope on a different bacterium. Here, we present non-pathogenic Escherichia coli and Salmonella enterica serovar Typhimurium expressing the sialyllactose oligosaccharide epitope of the ganglioside GM3. By expression of the galactosyltransferase LgtE and the sialic acid transferase Lst as well as the CMP-sialic acid synthetase SiaB from Neisseria gonorrhoeae and Neisseria meningitidis in engineered strains devoid of the sialic acid catabolism, the GM3 sugar epitope was displayed on these bacteria as demonstrated by live cell immunostaining and a detailed analysis of their lipooligosaccharides. These strains offer the possibility to investigate the role of sialic acid in the recognition of bacteria by the immune system in a non-pathogenic background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.