SUMMARYDigital imaging technologies such as X-ray scans and ultrasound provide a convenient and non-invasive way to capture high-resolution images. The colour intensity of digital images provides information on the geometrical features and material distribution which can be utilised for stress analysis. The proposed approach employs an automatic and robust algorithm to generate quadtree (2D) or octree (3D) meshes from digital images. The use of polygonal elements (2D) or polyhedral elements (3D) constructed by the scaled boundary finite element method avoids the issue of hanging nodes (mesh incompatibility) commonly encountered by finite elements on quadtree or octree meshes. The computational effort is reduced by considering the small number of cell patterns occurring in a quadtree or an octree mesh. Examples with analytical solutions in 2D and 3D are provided to show the validity of the approach. Other examples including the analysis of 2D and 3D microstructures of concrete specimens as well as of a domain containing multiple spherical holes are presented to demonstrate the versatility and the simplicity of the proposed technique.
A procedure to construct temporally local schemes for the computation of fractional derivatives is proposed. The frequency-domain counterpart (iω) α of the fractional differential operator of order α is expressed as an improper integral of a rational function in iω. After applying a quadrature rule, the improper integral is approximated by a series of partial fractions. Each term of the partial fractions corresponds to an exponential kernel in the time domain. The convolution integral in a fractional derivative can be evaluated recursively leading to a local scheme. As the arguments of the exponential functions are always real and negative, the scheme is stable. The present procedure provides a convenient way to evaluate the quality of a given algorithm by examining its accuracy in fitting the function (iω) α . It is revealed that the non-classical solution methods for fractional differential equations proposed by Yuan and Agrawal (ASME J Vib Acoust 124:321-324, 2002) and by Diethelm (Numer Algorithms 47:361-390, 2008) can also be interpreted as applying specific quadrature rules to evaluate the improper integral numerically. Over a wider range of frequencies, Diethelm's algorithm provides a more accurate fitting than the YA algorithm. Therefore, it leads to better performance. Further exploiting this advantage of the proposed derivation, a novel quadrature rule leading to an even better performance than Diethelm's algorithm is proposed. Significant gains in accuracy are achieved at the extreme ends of the frequency range. This results in significant improvements in accuracy for late time responses. Several numerical examples, including fractional differential equations of degree α = 0.3 and α = 1.5, demonstrate the accuracy and efficiency of the proposed method.
SUMMARYThis paper is devoted to the analysis of elastodynamic problems in 3D-layered systems which are unbounded in the horizontal direction. For this purpose, a finite element model of the near field is coupled to a scaled boundary finite element model (SBFEM) of the far field. The SBFEM is originally based on describing the geometry of a half-space or full-space domain by scaling the geometry of the near field / far field interface using a radial coordinate. A modified form of the SBFEM for waves in a 2D layer is also available. None of these existing formulations can be used to describe a 3D-layered medium.In this paper, a modified SBFEM for the analysis of 3D-layered continua is derived. Based on the use of a scaling line instead of a scaling centre, a suitable scaled boundary transformation is proposed. The derivation of the corresponding scaled boundary finite element (SBFE) equations in displacement and stiffness is presented in detail. The latter is a nonlinear differential equation with respect to the radial coordinate, which has to be solved numerically for each excitation frequency considered in the analysis.Various numerical examples demonstrate the accuracy of the new method and its correct implementation. These include rigid circular and square foundations embedded in or resting on the surface of layered homogeneous or inhomogeneous 3D soil deposits over rigid bedrock. Hysteretic damping is assumed in some cases. The dynamic stiffness coefficients calculated using the proposed method are compared with analytical solutions or existing highly accurate numerical results.
SUMMARYA high-order local transmitting boundary to model the propagation of acoustic or elastic, scalar or vectorvalued waves in unbounded domains of arbitrary geometry is proposed. It is based on an improved continuedfraction solution of the dynamic stiffness matrix of an unbounded medium. The coefficient matrices of the continued-fraction expansion are determined recursively from the scaled boundary finite element equation in dynamic stiffness. They are normalised using a matrix-valued scaling factor, which is chosen such that the robustness of the numerical procedure is improved. The resulting continued-fraction solution is suitable for systems with many DOFs. It converges over the whole frequency range with increasing order of expansion and leads to numerically more robust formulations in the frequency domain and time domain for arbitrarily high orders of approximation and large-scale systems. Introducing auxiliary variables, the continued-fraction solution is expressed as a system of linear equations in i! in the frequency domain. In the time domain, this corresponds to an equation of motion with symmetric, banded and frequency-independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable in the frequency and time domains. Analytical and numerical examples demonstrate the superiority of the proposed method to an existing approach and its suitability for time-domain simulations of large-scale systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.