SUMMARYDigital imaging technologies such as X-ray scans and ultrasound provide a convenient and non-invasive way to capture high-resolution images. The colour intensity of digital images provides information on the geometrical features and material distribution which can be utilised for stress analysis. The proposed approach employs an automatic and robust algorithm to generate quadtree (2D) or octree (3D) meshes from digital images. The use of polygonal elements (2D) or polyhedral elements (3D) constructed by the scaled boundary finite element method avoids the issue of hanging nodes (mesh incompatibility) commonly encountered by finite elements on quadtree or octree meshes. The computational effort is reduced by considering the small number of cell patterns occurring in a quadtree or an octree mesh. Examples with analytical solutions in 2D and 3D are provided to show the validity of the approach. Other examples including the analysis of 2D and 3D microstructures of concrete specimens as well as of a domain containing multiple spherical holes are presented to demonstrate the versatility and the simplicity of the proposed technique.
Determination of effective composite properties for a real distribution of piezoelectric particles in cement matrix is considered using a representative volume element. The scaled boundary finite element method is proposed to analyse cement-based piezoelectric ceramic composites. Quadtree hierarchical meshing structure is utilized to provide a mesh that captures the material variation in the representative volume element effectively based on the colour of the piezoelectric composite's image. Analyses with carefully selected boundary conditions are performed to obtain the effective material properties of various samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.