SUMMARYA high-order local transmitting boundary to model the propagation of acoustic or elastic, scalar or vectorvalued waves in unbounded domains of arbitrary geometry is proposed. It is based on an improved continuedfraction solution of the dynamic stiffness matrix of an unbounded medium. The coefficient matrices of the continued-fraction expansion are determined recursively from the scaled boundary finite element equation in dynamic stiffness. They are normalised using a matrix-valued scaling factor, which is chosen such that the robustness of the numerical procedure is improved. The resulting continued-fraction solution is suitable for systems with many DOFs. It converges over the whole frequency range with increasing order of expansion and leads to numerically more robust formulations in the frequency domain and time domain for arbitrarily high orders of approximation and large-scale systems. Introducing auxiliary variables, the continued-fraction solution is expressed as a system of linear equations in i! in the frequency domain. In the time domain, this corresponds to an equation of motion with symmetric, banded and frequency-independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable in the frequency and time domains. Analytical and numerical examples demonstrate the superiority of the proposed method to an existing approach and its suitability for time-domain simulations of large-scale systems.
SUMMARYA high-frequency open boundary has been developed for the transient seepage analyses of semi-infinite layers with a constant depth. The scaled boundary finite element equation of pore water pressure is formulated first in the frequency domain. With the eigenvalue problem, the equation can be decoupled into modal equations whose modal dynamic permeability equation can be determined. The continued fraction technique is adopted to formulate the continued fraction solution in the frequency domain. All constants in the solution are determined recursively at the high-frequency limit. By introducing auxiliary variables and the continued fraction solution to the relationship between the prescribed seepage flow and the pore water pressure in the frequency domain, the open boundary condition is obtained. After transformed to the time domain, the open boundary condition is expressed as a system of fractional differential equations. No convolution integral is required. The accuracy of the analysis results increases with the increasing orders of continued fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.