Sporotrichosis is a mycosis caused by fungi from the Sporothrix schenckii species complex, whose prototypical member is Sporothrix schenckii sensu stricto. Pattern recognition receptors (PRRs) recognize and respond to pathogen-associated molecular patterns (PAMPs) and shape the following adaptive immune response. A family of PRRs most frequently associated with fungal recognition is the nucleotide-binding oligomerization domain-like receptor (NLR). After PAMP recognition, NLR family pyrin domain-containing 3 (NLRP3) binds to apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 to form the NLRP3 inflammasome. When activated, this complex promotes the maturation of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cell death through pyroptosis. In this study, we aimed to evaluate the importance of the NLRP3 inflammasome in the outcome of S. schenckii infection using the following three different knockout (KO) mice: NLRP3 , ASC and caspase-1 . All KO mice were more susceptible to infection than the wild-type, suggesting that NLRP3-triggered responses contribute to host protection during S. schenckii infection. Furthermore, the NLRP3 inflammasome appeared to be critical for the ex vivo release of IL-1β, IL-18 and IL-17 but not interferon-γ. Additionally, a role for the inflammasome in shaping the adaptive immune response was suggested by the lower frequencies of type 17 helper T (Th17) cells and Th1/Th17 but not Th1 cells in S. schenckii-infected KO mice. Overall, our results indicate that the NLRP3 inflammasome links the innate recognition of S. schenckii to the adaptive immune response, so contributing to protection against this infection.
Ethyl ferulate (FAEE) has been widely studied due to its beneficial heath properties and, when incorporated in creams, shows a high sun protection capacity. Here we aimed to compare FAEE and its precursor, ferulic acid (FA), as free radical scavengers, inhibitors of oxidants produced by leukocytes and the alterations in rheological properties when incorporated in emulsion based creams. The cell-free antiradical capacity of FAEE was decreased compared to FA. However, FAEE was more effective regarding the scavenging of reactive oxygen species produced by activated leukocytes. Stress and frequency sweep tests showed that the formulations are more elastic than viscous. The viscoelastic features of the formulations were confirmed in the creep and recovery assay and showed that the FAEE formulation was less susceptive to deformation. Liberation experiments showed that the rate of FAEE release from the emulsion was slower compared to FA. In conclusion, FAEE is more effective than FA as a potential inhibitor of oxidative damage produced by oxidants generated by leukocytes. The rheological alterations caused OPEN ACCESSMolecules 2014, 19 8125 by the addition of FAEE are indicative of lower spreadability, which could be useful for formulations used in restricted areas of the skin.
This study presents the increased efficiency of NADPH oxidase inhibition produced by esterification of protocatechuic acid (P0). Alkyl esters bearing chain lengths of 4 (P4), 7 (P7) and 10 (P10) carbons were synthesized and their oxidation potential, hydrophobicity, antiradical activity, inhibition of superoxide anion (O2°(-)), and the abilities to affect hypochlorous acid (HOCl) production by leukocytes and inhibit myeloperoxidase (MPO) chlorinating activity were studied. The increased hydrophobicity (logP, 0.81-4.82) of the esters was not correlated with a significant alteration in their oxidation potential (0.222-0.298 V). However, except for P10, the esters were ~ 2-fold more effective than the acid precursor for the scavenging of DPPH and peroxyl radicals. The esters were strong inhibitors of O2°(-) released by activated neutrophils (PMNs) and peripheral blood mononuclear cells (PBMCs). A correlation was found between the carbon chain length and the relative inhibitory potency. P7, the most active ester, was ~ 10-fold more efficient as NADPH oxidase inhibitor than apocynin. The esters strongly inhibited the release of HOCl by PMNs, which was a consequence of the inhibition of NADPH oxidase activity in these cells. In conclusion, as effective inhibitors of NADPH oxidase, the esters of protocatechuic acid are promising drugs for treatment of chronic inflammatory diseases. Moreover, this is the first demonstration that, besides the redox active moiety, the hydrophobicity can also be a determinant factor for the design of NADPH oxidase inhibitors.
Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE), an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential (E pa) measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 by Staphylococcus aureus stimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.