We present Hubble Space Telescope (HST) photometry of a selected sample of 50 long-period, lowextinction Milky Way Cepheids measured on the same WFC3 F 555W -, F 814W -, and F 160W -band photometric system as extragalactic Cepheids in Type Ia supernova host galaxies. These bright Cepheids were observed with the WFC3 spatial scanning mode in the optical and near-infrared to mitigate saturation and reduce pixel-to-pixel calibration errors to reach a mean photometric error of 5 millimags per observation. We use the new Gaia DR2 parallaxes and HST photometry to simultaneously constrain the cosmic distance scale and to measure the DR2 parallax zeropoint offset appropriate for Cepheids. We find the latter to be −46 ± 13 µas or ± 6 µas for a fixed distance scale, higher than found from quasars, as expected, for these brighter and redder sources. The precision of the distance scale from DR2 has been reduced by a factor of 2.5 because of the need to independently determine the parallax offset. The best-fit distance scale is 1.006 ± 0.033 , relative to the scale from Riess et al. (2016) with H 0 = 73.24 km s −1 Mpc −1 used to predict the parallaxes photometrically, and is inconsistent with the scale needed to match the Planck 2016 CMB data combined with ΛCDM at the 2.9σ confidence level (99.6%). At 96.5% confidence we find that the formal DR2 errors may be underestimated as indicated. We identify additional error associated with the use of augmented Cepheid samples utilizing ground-based photometry and discuss their likely origins. Including the DR2 parallaxes with all prior distance-ladder data raises the current tension between the late and early Universe route to the Hubble constant to 3.8σ (99.99%). With the final expected precision from Gaia, the sample of 50 Cepheids with HST photometry will limit to 0.5% the contribution of the first rung of the distance ladder to the uncertainty in the H 0 .2 Riess et al.
We present year-long, near-infrared Hubble Space Telescope WFC3 observations used to search for Mira variables in NGC 1559, the host galaxy of the Type Ia supernova (SN Ia) 2005df. This is the first dedicated search for Miras, highly-evolved low-mass stars in a SN Ia host and subsequently the first calibration of the SN Ia luminosity using Miras in a role historically played by Cepheids. We identify a sample of 115 O-rich Miras with P < 400 day based on their light curve properties. We find that the scatter in the Mira Period-Luminosity Relation (PLR) is comparable to Cepheid PLRs seen in SN Ia supernova host galaxies. Using a sample of O-rich Miras discovered in NGC 4258 with HST F160W and its maser distance, we measure a distance modulus for NGC 1559 of µ 1559 = 31.41 ± 0.050 (statistical) ±0.052 (systematic) mag. Based on the light curve of the normal, well-observed, low-reddening SN 2005df, we obtain a measurement of the fiducial SN Ia absolute magnitude of M 0 B = −19.27 ± 0.13 mag. With the Hubble diagram of SNe Ia we find H 0 = 72.7 ± 4.5 km s −1 Mpc −1 . Combining the calibration from the NGC 4258 megamaser and the Large Magellanic Cloud detached eclipsing binaries gives a best value of H 0 = 73.3 ± 3.9 km s −1 Mpc −1 . This result is within 1σ of the Hubble constant derived using Cepheids and multiple calibrating SNe Ia. This is the first of four expected calibrations of the SN Ia luminosity from Miras which should reduce the error in H 0 via Miras to ∼ 3%. In light of the present Hubble tension and JWST, Miras have utility in the extragalactic distance scale to check Cepheid distances or calibrate nearby SNe in early-type host galaxies that would be unlikely targets for Cepheid searches.
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low . Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0.01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, τ .Recently, the BICEP2 experiment announced the detection of B-mode polarization at of 40-200, 5 but it is unclear whether this signal is cosmological or Galactic in nature. These results have generated strong interest in complementary experiments and have highlighted the importance of multi-frequency observations for foreground subtraction. A measurement of B-modes in the CMB would constitute important evidence for inflation and a measurement of the energy scale at which inflation occured. The tensor-to-scalar ratios, r ≤ 0.1, being probed correspond to E ∼ 10 16 GeV, near grand-unified-theory (GUT) energy scales. The gravitational waves from inflation are our only probe of the physics at such enormous energies and at such early times, just 10 −35 seconds after the Big Bang. They would also provide the first firm evidence for the existence of quantum-gravitational effects. 6 Detecting primordial gravitational waves requires greater frequency coverage to definitively rule out Galactic foreground contamination, as well as a measurement of the B-mode signal over a wider range of angular scales to verify the full shape of the B-mode power spectrum.A number of experiments are searching for B-mode polarization. Notably, the Planck satellite has mapped the entire sky in nine frequency bands from 30 to 857 GHz, allowing measurement of CMB polarization over a broad range of angular scales with the ability to remove Galactic foreground contamination; however, it is yet to be seen whether Planck will have the ability to constrain this signal. In this paper we present the Cosmology Large Angular Scale Surveyor (CLASS), which is leading the effort to map the CMB polarization at large angular scales from the ground. CLASS will observe in four frequency bands centered on 38, 93, 148, and 217 GHz. CLASS is uniquely poised to measure inflationary gravitational waves through its ability to measure CMB polarization at the largest angular scales, a...
We present year-long, near-infrared Hubble Space Telescope WFC3 observations of Mira variables in the water megamaser host galaxy NGC 4258. Miras are AGB variables that can be divided into oxygen-(O-) and carbon-(C-) rich subclasses. Oxygen-rich Miras follow a tight (scatter ∼ 0.14 mag) Period-Luminosity Relation (PLR) in the near-infrared and can be used to measure extragalactic distances. The water megamaser in NGC 4258 gives a geometric distance to the galaxy accurate to 2.6% that can serve to calibrate the Mira PLR. We develop criteria for detecting and classifying O-rich Miras with optical and NIR data as well as NIR data alone. In total, we discover 438 Mira candidates that we classify with high confidence as O-rich. Our most stringent criteria produce a sample of 139 Mira candidates that we use to measure a PLR. We use the OGLE-III sample of O-rich Miras in the LMC to obtain a relative distance modulus, µ 4258 − µ LM C = 10.95 ± 0.01 (statistical) ±0.06 (systematic) mag which is statistically consistent with the relative distance determined using Cepheids. These results demonstrate the feasibility of discovering and characterizing Miras using the near-infrared with the Hubble Space Telescope and the upcoming James Webb Space Telescope and using them to measure extragalactic distances and determine the Hubble constant.
The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.