The behavior of individual nanocrystals during superlattice phase transitions can profoundly affect the structural perfection and electronic properties of the resulting superlattices. However, details of nanocrystal morphological changes during superlattice phase transitions are largely unknown due to the lack of direct observation. Here, we report the dynamic deformability of PbSe semiconductor nanocrystals during superlattice phase transitions that are driven by ligand displacement. Real-time high-resolution imaging with liquid-phase transmission electron microscopy reveals that following ligand removal, the individual PbSe nanocrystals experience drastic directional shape deformation when the spacing between nanocrystals reaches 2 to 4 nm. The deformation can be completely recovered when two nanocrystals move apart or it can be retained when they attach. The large deformation, which is responsible for the structural defects in the epitaxially fused nanocrystal superlattice, may arise from internanocrystal dipole–dipole interactions.
Oriented attachment of nanocrystals has been recognized as an important strategy to construct epitaxially connected superlattices for various applications. The necking formation between semiconductor nanocrystals during oriented attachment, which largely determines the properties of the final superlattice structure, is still poorly understood. Here, with in situ liquid cell transmission electron microscopy (TEM) our direct observation reveals the nucleation and growth of necking between PbSe
We report measurements of low-frequency electronic noise in ordered superlattice, weaklyordered and random-packed thin films of 6.5 nm PbSe quantum dots prepared using several different ligand chemistries. For all samples, the normalized noise spectral density of the dark current revealed a Lorentzian component, reminiscent of the generation-recombination noise, superimposed on the 1/f background (f is the frequency). An activation energy of ~0.3 eV was extracted from the temperature dependence of the noise spectra. The noise level in the ordered films was lower than that in the weakly-ordered and random-packed films. A large variation in the magnitude of the noise spectral density was also observed in samples with different ligand treatments. The obtained results are important for application of colloidal quantum dot films in photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.