The prevalence of diabetes mellitus is currently at epidemic proportions and it is estimated that it will increase even further over the next decades. Although genetic predisposition and lifestyle choices are commonly accepted reasons for the occurrence of type 2 diabetes, it has recently been suggested that environmental pollutants are additional risk factors for diabetes development and this review aims to give an overview of the current evidence for this. More specifically, because of the crucial role of pancreatic beta cells in the development and progression of type 2 diabetes, the present work summarises the known effects of several compounds on beta cell function with reference to mechanistic studies that have elucidated how these compounds interfere with the insulin secreting capacity of beta cells. Oestrogenic compounds, organophosphorus compounds, persistent organic pollutants and heavy metals are discussed, and a critical reflection on the relevance of the concentrations used in mechanistic studies relative to the levels found in the human population is given. It is clear that some environmental pollutants affect pancreatic beta cell function, as both epidemiological and experimental research is accumulating. This supports the need to develop a solid and structured platform to fully explore the diabetes-inducing potential of pollutants.
Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs) in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD) method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds), were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ) dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA). PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound.
We investigated estrogen-like properties of five perfluorinated compounds using a combination of three in vitro assays. By means of an E-screen assay, we detected the proliferation-promoting capacity of the fluorotelomer alcohols 1H,1H,2H,2H-perfluorooctan-1-ol (6:2 FTOH) and 1H,1H,2H,2H-perfluoro-decan-1-ol (8:2 FTOH). The more widely environmentally distributed compounds perfluoro-1-octane sulfonate, perfluorooctanoic acid, and perfluorononanoic acid did not seem to possess this hormone-dependent proliferation capacity. We investigated cell cycle dynamics using flow cytometric analyses of the DNA content of the nuclei of MCF-7 breast cancer cells. Exposure to both fluorotelomer alcohols stimulated resting MCF-7 cells to reenter the synthesis phase (S-phase) of the cell cycle. After only 24 hr of treatment, we observed significant increases in the percentage of cells in the S-phase. In order to further investigate the resemblance of the newly detected xenoestrogens to the reference compound 17β-estradiol (E2), gene expression of a number of estrogen-responsive genes was analyzed by real-time polymerase chain reaction. With E2, as well as 4-nonylphenol and the fluorotelomer alcohols, we observed up-regulation of trefoil factor 1, progesterone receptor, and PDZK1 and down-regulation of ERBB2 gene expression. We observed small but relevant up-regulation of the estrogen receptor as a consequence of exposures to 6:2 FTOH or 8:2 FTOH. The latter finding suggests an alternative mode of action of the fluorotelomer alcohols compared with that of E2. This study clearly underlines the need for future in vivo testing for specific endocrine-related end points.
The obesogen hypothesis states that together with an energy imbalance between calories consumed and calories expended, exposure to environmental compounds early in life or throughout lifetime might have an influence on obesity development. In this work, we propose a new approach for obesogen screening, i.e., the use of transcriptomics in the 3T3-L1 pre-adipocyte cell line. Based on the data from a previous study of our group using a lipid accumulation based adipocyte differentiation assay, several human-relevant obesogenic compounds were selected: reference obesogens (Rosiglitazone, Tributyltin), test obesogens (Butylbenzyl phthalate, butylparaben, propylparaben, Bisphenol A), and non-obesogens (Ethylene Brassylate, Bis (2-ethylhexyl)phthalate). The high stability and reproducibility of the 3T3-L1 gene transcription patterns over different experiments and cell batches is demonstrated by this study. Obesogens and non-obesogen gene transcription profiles were clearly distinguished using hierarchical clustering. Furthermore, a gradual distinction corresponding to differences in induction of lipid accumulation could be made between test and reference obesogens based on transcription patterns, indicating the potential use of this strategy for classification of obesogens. Marker genes that are able to distinguish between non, test, and reference obesogens were identified. Well-known genes involved in adipocyte differentiation as well as genes with unknown functions were selected, implying a potential adipocyte-related function of the latter. Cell-physiological lipid accumulation was well estimated based on transcription levels of the marker genes, indicating the biological relevance of omics data. In conclusion, this study shows the high relevance and reproducibility of this 3T3-L1 based in vitro toxicogenomics tool for classification of obesogens and biomarker discovery. Although the results presented here are promising, further confirmation of the predictive value of the set of candidate biomarkers identified as well as the validation of their clinical role will be needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.