In recent years, there has been a large focus on the Arctic due to the rapid changes of the region. Arctic sea level determination is challenging due to the seasonal to permanent sea-ice cover, lack of regional coverage of satellites, satellite instruments ability to measure ice, insufficient geophysical models, residual orbit errors, challenging retracking of satellite altimeter data. We present the European Space Agency (ESA) Climate Change Initiative (CCI) Technical University of Denmark (DTU)/Technischen Universität München (TUM) sea level anomaly (SLA) record based on radar satellite altimetry data in the Arctic Ocean from the European Remote Sensing satellite number 1 (ERS-1) (1991) to CryoSat-2 (2018). We use updated geophysical corrections and a combination of altimeter data: Reprocessing of Altimeter Product for ERS (REAPER) (ERS-1), ALES+ retracker (ERS-2, Envisat), combination of Radar Altimetry Database System (RADS) and DTUs in-house retracker LARS (CryoSat-2). Furthermore, this study focuses on the transition between conventional and Synthetic Aperture Radar (SAR) altimeter data to make a smooth time series regarding the measurement method. We find a sea level rise of 1.54 mm/year from September 1991 to September 2018 with a 95% confidence interval from 1.16 to 1.81 mm/year. ERS-1 data is troublesome and when ignoring this satellite the SLA trend becomes 2.22 mm/year with a 95% confidence interval within 1.67-2.54 mm/year. Evaluating the SLA trends in 5 year intervals show a clear steepening of the SLA trend around 2004. The sea level anomaly record is validated against tide gauges and show good results. Additionally, the time series is split and evaluated in space and time.sheet mass losses. Outlet glaciers are losing mass more rapidly [6,7], contributing to the sea level rise, changing the oceans freshwater flux, and influencing the ocean thermohaline circulation [8].The polar oceans are often not included in the global sea level estimations and can be seen as white spots on the global sea level maps. This is because of the challenging polar sea level determination due to; the seasonal to permanent sea-ice cover, the lack of regional coverage of satellites, satellite instruments ability to measure ice, insufficient geophysical models, residual orbit errors and retracking of satellite altimeter data.The sea-ice cover is in constant change. The sea-ice extent is the largest in March and the smallest in September. The Norwegian and Barents Sea are only seasonally covered by sea-ice while the central part up to the Canadian Archipelago and the North coast of Greenland are permanently ice covered (see Figure 1 for an Arctic Ocean overview). The older ice is pushed against these parts, and additionally, the Canadian Archipelago and the land-fast ice areas are also the part with the fewest leads and consequently the most inaccurate sea level determination [9].
Vertical land motion (VLM) from past and ongoing glacial changes can amplify or mitigate ongoing relative sea level change. We present a high-resolution VLM model for the wider Arctic, that includes both present-day ice loading (PDIL) and glacial isostatic adjustment (GIA). The study shows that the nonlinear elastic uplift from PDIL is significant (0.5-1 mm yr −1) in most of the wider Arctic and exceeds GIA at 15 of 54 Arctic GNSS sites, including sites in nonglaciated areas of the North Sea region and the east coast of North America. Thereby the sea level change from PDIL (1.85 mm yr −1) is significantly mitigated from VLM caused by PDIL. The combined VLM model was consistent with measured VLM at 85% of the GNSS sites (R = 0.77) and outperformed a GIA-only model (R = 0.64). Deviations from GNSS-measured VLM can be attributed to local circumstances causing VLM.
Vertical land motion (VLM) from past and ongoing glacial changes can amplify or mitigate ongoing relative sea level change. We present a high-resolution VLM model for the wider Arctic, that includes both present-day ice loading (PDIL) and glacial isostatic adjustment (GIA). The study shows that the nonlinear elastic uplift from PDIL is significant (0.5-1 mm yr −1 ) in most of the wider Arctic and exceeds GIA at 15 of 54 Arctic GNSS sites, including sites in nonglaciated areas of the North Sea region and the east coast of North America. Thereby the sea level change from PDIL (1.85 mm yr −1 ) is significantly mitigated from VLM caused by PDIL. The combined VLM model was consistent with measured VLM at 85% of the GNSS sites (R = 0.77) and outperformed a GIA-only model (R = 0.64). Deviations from GNSS-measured VLM can be attributed to local circumstances causing VLM.
Sea level change is an important indicator of climate change. Our study focuses on the sea level budget assessment of the Arctic Ocean using: (1) the newly reprocessed satellite altimeter data with major changes in the processing techniques; (2) ocean mass change data derived from GRACE satellite gravimetry; (3) and steric height estimated from gridded hydrographic data for the GRACE/Argo time period (2003–2016). The Beaufort Gyre (BG) and the Nordic Seas (NS) regions exhibit the largest positive trend in sea level during the study period. Halosteric sea level change is found to dominate the area averaged sea level trend of BG, while the trend in NS is found to be influenced by halosteric and ocean mass change effects. Temporal variability of sea level in these two regions reveals a significant shift in the trend pattern centered around 2009–2011. Analysis suggests that this shift can be explained by a change in large-scale atmospheric circulation patterns over the Arctic. The sea level budget assessment of the Arctic found a residual trend of more than 1.0 mm/yr. This nonclosure of the sea level budget is further attributed to the limitations of the three above mentioned datasets in the Arctic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.