Understanding the role of placenta stem cells during pregnancy and their paracrine actions could help in the study of some diseases that affect the placenta during pregnancy.
Our observations provide background for a novel mechanism for carotenoids' anti-inflammatory activity in the vasculature and may contribute to a better understanding of the protective effects of carotenoid-rich diets against CVD risk.
Human amniotic fluid mesenchymal stem cells (huAFMSCs) are emerging as a promising therapeutic option in regenerative medicine. Here, we characterized huAFMSC phenotype and multipotentiality. When cultured in osteogenic medium, huAFMSC displayed a significant increase in: Alkaline Phosphatase (ALP) activity and mRNA expression, Alizarin Red S staining and Runx2 mRNA expression; whereas maintaining these cells in an adipogenic culture medium gave a time-dependent increase in PPARγ and FABP4 mRNA expression, glycerol-3-phosphate dehydrogenase (GPDH) activity and positivity to Oil Red Oil staining. These results confirm that huAFMSCs can differentiate toward osteogenic and adipogenic phenotypes. The canonical Wnt/ßcatenin signaling pathway appears to trigger huAFMSC osteoblastogenesis, since during early phases of osteogenic differentiation, the expression of Dishevelled-2 (Dvl-2), of the non-phosphorylated form of ß-catenin, and the phosphorylation of glycogen synthase kinase-3ß (GSK3ß) at serine 9 were upregulated. On the contrary, during adipogenic differentiation Dvl-2 expression decreased, whereas that of ß-catenin remained unchanged. This was associated with a late increase in GSK3ß phosphorylation. Consistent with this scenario, huAFMSCs exposure to Dickkopf-1, a selective inhibitor of the Wnt signaling, abolished Runx2 and ALP mRNA upregulation during huAFMSC osteogenic differentiation, whereas it enhanced FABP4 expression in adipocyte-differentiating cells. Taken together, these results unravel novel molecular determinants of huAFMSC commitment towards osteoblastogenesis, which may represent potential targets for directing the differentiation of these cells and improving their use in regenerative medicine.FigureSchematic representation of Wnt pathway involved in the osteogenic and adipogenic differentiation of huAFMSCs. Our paper demonstrates that osteogenic commitment of these cells is linked to the stimulation of Wnt signal leading to the final transcriptional activation of early osteogenic markers such as RUNX-2 and ALP, mediated by β-catenin. DKK1 is a secreted Wnt antagonist that may be used as a drug to inhibit Wnt signal. In contrast, adipogenic commitment involves early inhibition of Wnt pathway leading to ubiquitination/degradation of β-catenin. This results in the transcription of PPARγ and FABP4, considered as the main initiators of adipogenesis. APC, adenomatous polyposis coli; βcat, β-catenin; CK1, casein kinase 1; DKK1, dickkopf 1; Dvl, Dishevelled; GSK3β, glycogen synthase kinase 3β; LRP5/6, low density lipoprotein receptor-related protein 5/6
Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor-α-stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.
In this study, we investigated the effects of long-term (9-month) treatment with pioglitazone (PIO; 20 mg/kg/d) in two animal models of Alzheimer's disease (AD)-related neural dysfunction and pathology: the PS1-KIM146V (human presenilin-1 M146V knock-in mouse) and 3xTg-AD (triple transgenic mouse carrying AD-linked mutations) mice. We also investigated the effects on wild-type (WT) mice. Mice were monitored for body mass changes, fasting glycemia, glucose tolerance, and studied for changes in brain mitochondrial enzyme activity (complexes I and IV) as well as energy metabolism (lactate dehydrogenase (LDH)). Cognitive effects were investigated with the Morris water maze (MWM) test and the object recognition task (ORT). Behavioral analysis revealed that PIO treatment promoted positive cognitive effects in PS1-KI female mice. These effects were associated with normalization of peripheral gluco-regulatory abnormalities that were found in untreated PS1-KI females. PIO-treated PS1-KI females also showed no statistically significant alterations in brain mitochondrial enzyme activity but significantly increased reverse LDH activity.PIO treatment produced no effects on cognition, glucose metabolism, or mitochondrial functioning in 3xTg-AD mice. Finally, PIO treatment promoted enhanced short-term memory performance in WT male mice, a group that did not show deregulation of glucose metabolism but that showed decreased activity of complex I in hippocampal and cortical mitochondria. Overall, these results indicate metabolically driven cognitive-enhancing effects of PIO that are differentially gender-related among specific genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.