Measurement of serum-free thyroxine (fT4) concentration provides a more accurate assessment of thyroid gland function than serum thyroxine (T4) or 3,5,3'-triiodothyronine (T3). Techniques for measuring serum fT4 concentration include standard equilibrium dialysis (SED), radioimmunoassay (RIA), and a combination of both (modified equilibrium dialysis [MED]). This study compared results of serum fT4 measurements by means of SED, MED, and 5 RIAs in 30 healthy dogs, 10 dogs with hypothyroidism, and 31 euthyroid dogs with concurrent illness for which hypothyroidism was a diagnostic consideration. Serum fT4 concentrations were comparable when determined by the SED and MED techniques, and mean serum fT4 concentrations were significantly (P < .01) lower in dogs with hypothyroidism than in healthy dogs and euthyroid dogs with concurrent illness. Significant (P < .05) differences in fT4 concentrations were identified among the 5 RIAs and among the RIAs and MED and SED. Serum fT4 concentrations were consistently lower when fT4 was determined by the RIAs, compared with either equilibrium dialysis technique. Serum fT4 concentrations were significantly lower (P < .01) in dogs with hypothyroidism than in healthy dogs for all RIAs; were significantly lower (P < .05) in dogs with hypothyroidism than in euthyroid dogs with concurrent illness for 4 RIAs; and were significantly lower (P < .01) in euthyroid dogs with concurrent illness than in healthy dogs for 4 RIAs. RIAs had the highest number of low serum fT4 concentrations in euthyroid dogs with concurrent illness. This study documented differences in test results among fT4 assays, emphasizing the importance of maintaining consistency in the assay used to measure serum fT4 concentrations in the clinical or research setting.
Vaccination of dogs for rabies increases serum concentrations of total IgE and induces IgE specific for vaccine antigens, including tissue culture residues. Vaccination history should be considered in the interpretation of serum total IgE concentrations.
Measurement of serum-free thyroxine (fT4) concentration provides a more accurate assessment of thyroid gland function than serum thyroxine (T4) or 3,5,3'-triiodothyronine (T3). Techniques for measuring serum fT4 concentration include standard equilibrium dialysis (SED), radioimmunoassay (RIA), and a combination of both (modified equilibrium dialysis [MED]). This study compared results of serum fT4 measurements by means of SED, MED, and 5 RIAs in 30 healthy dogs, 10 dogs with hypothyroidism, and 31 euthyroid dogs with concurrent illness for which hypothyroidism was a diagnostic consideration. Serum fT4 concentrations were comparable when determined by the SED and MED techniques, and mean serum fT4 concentrations were significantly (P < .01) lower in dogs with hypothyroidism than in healthy dogs and euthyroid dogs with concurrent illness. Significant (P < .05) differences in fT4 concentrations were identified among the 5 RIAs and among the RIAs and MED and SED. Serum fT4 concentrations were consistently lower when fT4 was determined by the RIAs, compared with either equilibrium dialysis technique. Serum fT4 concentrations were significantly lower (P < .01) in dogs with hypothyroidism than in healthy dogs for all RIAs; were significantly lower (P < .05) in dogs with hypothyroidism than in euthyroid dogs with concurrent illness for 4 RIAs; and were significantly lower (P < .01) in euthyroid dogs with concurrent illness than in healthy dogs for 4 RIAs. RIAs had the highest number of low serum fT4 concentrations in euthyroid dogs with concurrent illness. This study documented differences in test results among fT4 assays, emphasizing the importance of maintaining consistency in the assay used to measure serum fT4 concentrations in the clinical or research setting.
Reduction of the prolonged terminal elimination phase of gentamicin may be caused by diabetes mellitus, irrespective of the model of diabetes. To test this hypothesis, Five normal dogs, three dogs with alloxan‐induced diabetes mellitus, and four dogs with naturally occurring diabetes mellitus (all of which were given exogenous insulin to control hyperglycemia) were given 4.4 mg/kg gentamicin intravenously. Serum pharmacokinetics were analyzed using noncompartmental pharmacokinetics assuming a sum of exponential terms. Gentamicin pharmacokinetics during the first 8 h were the same in normal and diabetic dogs. Over 7 days, MRT in normal dogs (5830 ± 2970 min, mean ± SD) was longer (P < 0.01) than in diabetic dogs (136 ± 164 min). In diabetic dogs, Cls was greater (3.01 ± 0.86 ml/min/kg) than in normal dogs (1.45 ± 0.11 ml/min/kg; P < 0.01), whereas Vd(ss) was smaller in diabetic dogs (0.405 ± 0.508 1/kg) than in normal dogs (8.56 ± 4.48 1/kg; p,<0.01). Serum gentamicin concentrations were less than 0.020 μg/ml by 2 days in all of the diabetic dogs, but were 0.048 ± 0.018 (μg/ml at 7 days in normal dogs. Thus, diabetes mellitus, either induced by alloxan administration or naturally occurring, abolished the terminal elimination phase of gentamicin disposition in a non‐rodent species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.