Schizophrenia is clinically and neuropsychologically characterized by severe cognitive and functional impairment suggesting the presence of a neurodegenerative process in the brains of affected individuals. A variety of neuroanatomical changes have been described such as loss and disorientation of neurons in grey and white matter and cortical atrophy. However, the neuropathological basis for schizophrenia is still unclear. In the present study we monitored the density of GFAP-positive astrocytes in brains of 33 schizophrenic patients and 26 healthy controls. Both grey matter (entorhinal cortex and subiculum) and white matter (premotor cortex, subventricular zone of the third ventricle and next to inferior horn) structures were measured bilaterally. The overall finding was that there is no evidence for increased astrogliosis in brains of schizophrenic patients vs healthy controls. Therefore, degeneration is unlikely to be the main neuropathological mechanism in schizophrenic brains.
Innervation density and morphological aberrations of cholinergic fibers were studied with choline acetyltransferase (ChAT) immunocytochemistry and acetylcholinesterase (AChE) histochemistry in 30-35 month-old aged rats and rats with long-term bilateral lesions of the magnocellular basal nucleus (MBN). In addition, AChE histochemistry was performed on human cortical sections derived from autopsy brains of normal aged and Alzheimer's disease (AD) patients. A limited but variable number of morphological alterations were observed in ChAT-immunoreactive fibers in the cortex and the hippocampus of the aged control rats. The aged MBN-lesioned rats displayed a severely reduced number of cholinergic fibers in the denervated areas of the neocortex, whereas the surviving fibers showed a strongly increased number of aberrations. Fiber anomalies were also observed in the cortex of the aged human subjects and Alzheimer patients, the latter showing a higher incidence of such aberrations. Only a part of these distended profiles were seen in close association with senile plaques as detected in the AChE-stained material. These findings suggest that experimental MBN lesions combined with aging share with AD the induction of large quantities of fiber malformations. Implications of possible mechanisms in both conditions are discussed.
The authors report the second recorded example of a sporadic CJD phenotype occurring in association with the P102L GSS genotype, and the first instance in which the phenotype was the rule rather than the exception, or was associated with prominent beta-A4 plaque formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.