Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFieldstreated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline This work was presented as a poster at the annual meeting of the
Toxicologic pathology is the art of assessment of potential adverse effects at the tissue level in pre‐clinical studies. In the case of biomaterials and medical devices, the toxicologic pathologists assess the safety (biocompatibility) and efficacy (conditions of the use) of the implantable materials. Proper assessment of biocompatibility of biomaterials is of utmost importance, since it helps to determine their safety after implantation in humans. Biomaterial‐related toxicity can be attributed to several factors, including for example leachable compounds from the material leading to thrombosis or carcinogenesis, or biodegradation of the material causing changes in its physical and compatibility properties. Evaluation of biocompatibility and biofunctionality involves assessment of cytotoxicity, allergic responses, irritation, inflammation and systemic and chronic toxicity. In many of these assessments, the toxicologic pathologist has an important role in determining product safety and potential toxicity. In this article, we review the special needs for proper toxicologic pathology assessment of biomaterials and degradable polymers. We review common adverse effects expected with biomaterials and describe their pathological picture and their clinical relevance. We also introduce a novel compact MR imaging technology as a tool for assessing biocompatibility and efficacy of implanted biodegradable materials, since it allows for the longitudinal imaging and quantification of inflammation in vivo caused by the device implantation, and enabling general inspection of shape, location and integrity of the device in vivo. Since the MR imaging technique is non‐invasive, the effects of the implantable device can be monitored longitudinally in the same animal without perturbation of the pathology. Copyright © 2014 John Wiley & Sons, Ltd.
Introduction: Although a number of effective drugs are available to treat central nervous system (CNS) disorders, their ability to breach the tight regulation of the blood brain barrier (BBB) still remains a major challenge. Recently, the use of tumor treating fields (TTFields) has become an effective treatment approach for glioblastoma. Furthermore, its combination with chemotherapy significantly improved overall patient survival. Nonetheless, how TTFields could affect the BBB has not yet been studied. Our recent findings exhibit the potential of TTFields administration to open up the BBB in vitro with an optimal frequency of 100 kHz. Consequently, in this study, we therefore aimed to validate our data in vivo. Experimental procedures: Subsequent to 100 kHz TTFields or heat treatment for 72 h, rats were i.v. injected with Evan´s Blue (EB). Next, they were sacrificed to extract and quantify EB from the brain. In the same manner, rats were injected with TRITC-dextran (TD), after which permeation was visualized in sectioned brains. Cryosections of rat brains were also prepared post-TTFields treatment. These were stained for intercellular junction proteins claudin-5, occludin and PECAM-1 as well as immunoglobulin G (IgG) to assess vessel structure. Finally, serial dynamic contrast-enhanced (DCE) MRI with gadolinium (Gd) contrast agent was performed before and after TTFields administration. Results: Permeation of both EB and TD was observed in the brain after TTFields application. Moreover, brain cryosections displayed claudin-5 and occludin delocalization but not PECAM-1. Accumulation of IgG in the brain parenchyma was also noted. Confirming these observations, increased Gd in the brain was shown by DCE-MRI post TTFields treatment. A reversion to normal conditions was, however, detected 96 h after end of treatment demonstrated by no difference in contrast enhancement between control and TTFields-treated rats. Conclusions: Administration of 100 kHz TTFields in rats led to alterations in BBB integrity and permeability, which signal its opening. The subsequent recovery of the BBB at the end of treatment demonstrates transient effects, hence presenting TTFields as a possible novel clinical strategy to open the BBB for enhanced and more effective drug delivery strategy for CNS disorders. Citation Format: Ellaine Salvador, Almuth F. Kessler, Julia Hörmann, Malgorzata Burek, Catherine T. Brami, Tali V. Sela, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Förster, Carsten Hagemann. Blood brain barrier opening by TTFields: a future CNS drug delivery strategy [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 6251.
OBJECTIVE For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.