We show here that elevated levels of gonadotropins (luteinizing hormone and follicle stimulating hormone), as found in menopause or after ovariectomy, promote growth of human ovarian carcinoma by induction of tumor angiogenesis. Human epithelial ovarian cancer tumors progressed faster in ovariectomized mice. This induced growth could be attributed to the elevated levels of gonadotropins associated with loss of ovarian function because direct administration of gonadotropins also was effective in promoting tumor progression in vivo. On the other hand, gonadotropins had no direct effect on the proliferation of human ovarian cancer cells in vitro. Using MRI, we demonstrated that ovariectomy significantly (P < 0.02) induces neovascularization of human ovarian carcinoma spheroids implanted in nude mice. Moreover, conditioned medium of gonadotropin-treated human ovarian carcinoma cells showed increased mitogenic activity to bovine endothelial cells, and this activity could be blocked by neutralizing antibodies against luteinizing hormone and against vascular endothelial growth factor. Accordingly, gonadotropin stimulation resulted in a dose-dependentinduced expression of vascular endothelial growth factor in monolayer culture as well as in the outer proliferating cells of human ovarian cancer spheroids. These results demonstrate the significance of the elevated levels of gonadotropins, as found in menopause and in all ovarian cancer patients, on the progression of ovarian cancer and could explain the protective effect of estrogen replacement therapy. Based on these results, we suggest that hormonal therapy aimed at lowering the circulating levels of gonadotropins may possibly prolong remission in ovarian cancer by extending tumor dormancy.
Summary The reason(s) why individual cytotoxic T lymphocytes (CTL) possess a fast‐acting, perforin/granzyme‐mediated, as well as a much slower, Fas ligand (FasL) ‐driven killing mechanism is not clear, nor is the basis for wide variations in killing activity exhibited by individual CTL, ranging from minutes to hours. We show that perforin expression among individual, conjugated CTL varies widely, which can account for the heterogeneity in killing speeds exhibited by individual CTL. Despite a 2‐hr lag in FasL‐based killing, CTL lytic action is enhanced when the two mechanisms operate in concert. This is explained by finding that the two pathways in fact are jump‐started simultaneously with the lag in FasL lytic action reflecting pre‐lytic caspase‐8 activation and BH3‐interacting domain (BID) cleavage. The complementary action of the two lytic pathways, co‐expressed at varying levels among individual CTL, facilitates the lytic action of late‐stage poor perforin‐expressing CTL, ensuring optimal cytocidal action throughout the CTL response.
The preovulatory follicle provides a unique physiological example of rapid growth accompanied by neovascularization, two processes that are generally characteristic of pathologies such as wound repair or malignancy. During the hours preceding ovulation, follicular growth is accompanied by elevated levels of messenger RNA for vascular endothelial growth factor (VEGF). Angiogenic activity, mediated by VEGF, is manifested in the peripheral blood vessels surrounding the follicle, that show capillary sprouting and increased vascular permeability. Following ovulation, rapid infiltration of capillaries through the follicular wall is essential for the formation of the corpus luteum. In this review we compare the preovulatory follicle with a popular model of avascular solid tumour growth, namely the multicellular tumour spheroid, in particular the role of hypoxic stress in the regulation of angiogenesis in both systems.
Toxicologic pathology is the art of assessment of potential adverse effects at the tissue level in pre‐clinical studies. In the case of biomaterials and medical devices, the toxicologic pathologists assess the safety (biocompatibility) and efficacy (conditions of the use) of the implantable materials. Proper assessment of biocompatibility of biomaterials is of utmost importance, since it helps to determine their safety after implantation in humans. Biomaterial‐related toxicity can be attributed to several factors, including for example leachable compounds from the material leading to thrombosis or carcinogenesis, or biodegradation of the material causing changes in its physical and compatibility properties. Evaluation of biocompatibility and biofunctionality involves assessment of cytotoxicity, allergic responses, irritation, inflammation and systemic and chronic toxicity. In many of these assessments, the toxicologic pathologist has an important role in determining product safety and potential toxicity. In this article, we review the special needs for proper toxicologic pathology assessment of biomaterials and degradable polymers. We review common adverse effects expected with biomaterials and describe their pathological picture and their clinical relevance. We also introduce a novel compact MR imaging technology as a tool for assessing biocompatibility and efficacy of implanted biodegradable materials, since it allows for the longitudinal imaging and quantification of inflammation in vivo caused by the device implantation, and enabling general inspection of shape, location and integrity of the device in vivo. Since the MR imaging technique is non‐invasive, the effects of the implantable device can be monitored longitudinally in the same animal without perturbation of the pathology. Copyright © 2014 John Wiley & Sons, Ltd.
Advances in molecular cell biology, medical research, and drug development are driving a growing need for technologies that enable imaging the dynamics of molecular and physiological processes simultaneously in numerous non-adherent living cells. Here we describe a platform technology and software--the CKChip system--that enables continuous, fluorescence-based imaging of thousands of individual living cells, each held at a given position ("address") on the chip. The system allows for sequential monitoring, manipulation and kinetic analyses of the effects of drugs, biological response modifiers and gene expression in both adherent and non-adherent cells held on the chip. Here we present four specific applications that demonstrate the utility of the system including monitoring kinetics of reactive oxygen species generation, assessing the intracellular enzymatic activity, measuring calcium flux and the dynamics of target cell killing induced by conjugated cytotoxic T-lymphocytes. We found large variations among individual cells in the overall amplitude of their response to stimuli, as well as in kinetic parameters such as time of onset, initial rate and decay of the response, and frequency and amplitude of oscillations. These variations probably reflect the heterogeneity of even cloned cell populations that would have gone undetected in bulk cell measurements. We demonstrate the utility of the system in providing kinetic parameters of complex cellular processes such as Ca++ influx, transients and oscillations in numerous individual cells. The CKChip opens up new opportunities in cell-based research, in particular for acquiring fluorescence-based, kinetic data from multiple, individual non-adherent cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.