Oil palm empty fruit bunch (OPEFB) is a potential raw material abundantly available for bioethanol production. However, the second-generation bioethanol is still not yet economically feasible. The COVID-19 pandemic increases the demand for ethanol as the primary ingredient of hand sanitisers. This study evaluates the techno-economic feasibility of hand sanitiser production using OPEFB-based bioethanol. OPEFB was alkaline-pretreated, and simultaneous saccharification and fermentation (SSF) was then performed by adding Saccharomyces cerevisiae and cellulose enzyme. The cellulose content of the OPEFB increased from 39.30% to 63.97% after pretreatment. The kinetic parameters of the OPEFB SSF at 35 °C, which included a µ max, ks, and kd of 0.018 h−1, 0.025 g/dm3, and 0.213 h−1, respectively, were used as input in SuperPro Designer® v9.0. The total capital investment (TCI) and annual operating costs (AOC) of the plant were $645,000 and $305,000, respectively, at the capacity of 2000 kg OPEFB per batch. The batch time of the modelled plant was 219 h, with a total annual production of 32,506.16 kg hand sanitiser. The minimum hand sanitiser selling price was found to be $10/L, achieving a positive net present value (NPV) of $108,000, showing that the plant is economically feasible.
Gelatin is utilised as a nitrogen source to synthesise nitrogen (N)-doped carbon nanotubes (CNTs). The N-doped CNT was prepared by mixing gelatin and CNT, followed by calcination at 500 °C and 800 °C under N2 atmosphere. X-ray diffraction analysis shows that the higher gelatin weight ratio results in a decrease of the crystallisation. X-ray photoelectron spectroscopy deconvolution analysis confirms that pyridinic-N and pyrrolic-N have appeared at the surface of the samples. The higher calcination temperature affects the surface properties of N-doped CNT which tend to shift the pyrrolic-N to the pyridinic-N. Cyclic voltammetry analysis reveals that the presences of pyridinic-N and graphitic-N configuration have higher oxygen reduction reaction (ORR) activity compared to the N-pyrrolic structure.
Contradictions have been reported on the effect of organic solvents, especially toluene, on enzymatic ring-opening polymerization (eROP) of L-lactide. Studies have shown that log P, a common measure of hydrophilicity, affects enzyme activity. This study examines the effect of solvents with various log P values on the eROP of L-lactide, performed using Candida rugosa lipase (CRL). N,N-dimethylacetamide (DMA), 1,2-dimethoxybenzene, 1,4-dimethoxybenzene, diphenyl ether, and dodecane were used as the organic solvents. The eROP in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was also conducted to compare its performance with the organic solvents. The results show that [BMIM][PF6]− mediated eROP gave better conversion and molecular weight than the organic solvent-mediated eROP. In this study, the effects of solvents hydrophilicity are discussed, including the possibility of hexafluorophosphate ion ([PF6]−) hydrolysis to occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.