The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century.
Over the past few decades, the potential of collocated measurements of 6C data (3C of translational and 3C of rotational motion) has been demonstrated in global seismology using high-sensitivity, observatory-based ring laser technology. Proposed applications of 6C seismology range from tomographic reconstruction of near-receiver structure to the reduction of nonuniqueness in seismic source inverse problems. Applications to exploration problems have so far been hampered by the lack of appropriate sensors, but several applications have been proposed and demonstrated with array-derived rotational motion estimates. With the recent availability of, for example, fiber-optic-based high-sensitivity rotational motion sensors, widespread applications of 6C techniques to exploration problems are in sight. Potential applications are based on, for example, the fact that the extended set of combined translational and rotational motion observations enables carrying out array-type processing with single-station recordings such as wavefield separation and surface-wave suppression. Furthermore, measuring the rotational component (curl) of the seismic wavefield enables direct isolation of the S-wave constituents and could significantly improve S-wave exploration. Rotational measurements provide estimates of the spatial wavefield gradient at the free surface that allow carrying out analyses such as local slowness estimation and wavefield reconstruction. Furthermore, rotational motion measurements can help to resolve wavefield infidelity introduced by seismic instruments that are not well-coupled to the ground.
Measurements of the horizontal and vertical components of particle motion combined with estimates of the spatial gradients of the seismic wavefield enable seismic data to be acquired and processed using single dedicated multicomponent stations (e.g. rotational sensors) and/or small receiver groups instead of large receiver arrays. Here, we present seismic wavefield decomposition techniques that use spatial wavefield gradient data to separate land and ocean bottom data into their upgoing/downgoing and P/S constituents. Our method is based on the elastodynamic representation theorem with the derived filters requiring local measurements of the wavefield and its spatial gradients only. We demonstrate with synthetic data and a land seismic field data example that combining translational measurements with spatial wavefield gradient estimates allows separating seismic data recorded either at the Earth's free-surface or at the sea bottom into upgoing/downgoing and P/S wavefield constituents for typical incidence angle ranges of body waves. A key finding is that the filter application only requires knowledge of the elastic properties exactly at the recording locations and is valid for a wide elastic property range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.