BackgroundThe emergence and spread of malaria parasites resistant to artemisinin-based combination therapy stresses the need for novel drugs against malaria. Investigating plants used in traditional medicine to treat malaria remains a credible option for new anti-malarial drug development. This study was aimed at investigating the antiplasmodial activity and selectivity of extracts and fractions from Terminalia mantaly and Terminalia superba (Combretaceae) that are used in Cameroon to treat malaria.MethodsTwelve methanolic (m) and water (w) extracts obtained by maceration of powdered dried leaves (l), stem bark (sb) and root (r) of Terminalia mantaly (Tm) and Terminalia superba (Ts) and 12 derived fractions of hexane, chloroform, ethyl acetate and 4 final residues of selected extracts were assessed for antiplasmodial potential in vitro against the chloroquine-resistant PfINDO and the chloroquine-sensitive Pf3D7 strains of Plasmodium falciparum using the SYBR green I-based fluorescence assay. The cytotoxicity of potent extracts and fractions was evaluated in vitro using the MTT assay on HEK239T cell line.ResultsThe antiplasmodial IC50 of extracts from both plants ranged from 0.26 to > 25 µg/mL. Apart from the extracts Tmrm and Tsrw that exerted moderate antiplasmodial activities (IC50: 5–20 µg/mL) and Tmrw that was found to be non-active at the tested concentrations (IC50 > 25 µg/mL), all other tested crude extracts exhibited potent activities with IC50 < 5 µg/mL. The aqueous extracts from the stem bark of Terminalia mantaly (Tmsbw) and the leaf of Terminalia superba (Tslw) displayed the highest antiplasmodial activities (IC50: 0.26–1.26 µg/mL) and selectivity (SI > 158) on both resistant PfINDO and sensitive Pf3D7 strains. Four fractions upon further extraction with chloroform and ethyl acetate (TmlwChl, TmsbwChl, TmsbwEA, TsrmEA) afforded from three selected crude extracts (Tmlw, Tmsbw, Tsrm) exhibited highly potent activities against both P. falciparum strains (IC50 < 2 µg/mL) and high selectivity (SI > 109).ConclusionsThe results achieved in this work validate the reported traditional use of Terminalia mantaly and Terminalia superba to treat malaria. Moreover, the highly potent and selective fractions warrant further investigation to characterize the active antiplasmodial principles and progress them to rodent malaria models studies if activity and selectivity are evidenced.
Mycoses caused by Candida and Cryptococcus species, associated with the advent of antifungal drug resistance have emerged as major health problems. Improved control measures and innovative therapies are needed. This paper describes results from the screening of bio-guided fractionated extracts alone and combinations of Terminalia catappa, Terminalia mantaly and Monodora tenuifolia harvested in Cameroon. Crude ethanolic, hydro-ethanolic and aqueous extracts and bio-guided fractions were screened for antifungal activity against isolates of C. albicans, C. glabrata, C. parapsilosis and Cr. neoformans and the reference strain C. albicans NR-29450. Minimal inhibitory concentrations (MIC) were determined using a broth micro dilution method according to the Clinical & Laboratory Standards Institute (CLSI). Time kill kinetics of extracts alone and in combination were also evaluated. Extracts from T. mantaly stem bark were the most active with the best MIC values ranging from 0.04 mg/mL to 0.16 mg/mL. Synergistic interactions were observed with combinations of sub-fractions from M. tenuifolia, T. mantaly and T. catappa. Combination of sub-fractions from M. tenuifolia and T. mantaly (C36/C12) showed synergistic interaction and fungicidal effect against four out of five tested yeasts. These results support further investigation of medicinal plant extracts alone and in combination as starting points for the development of alternative antifungal therapy.
The aim of this work was to screen extracts from Annona muricata and Annona reticulata in vitro against Plasmodium falciparum. Crude ethanolic extracts, methylene chloride fractions, aqueous fractions, subfractions and isolated compounds (stigmasterol-3-O-β-d-glucopyranoside, lichexanthone, gallic acid and β-sitosterol-3-O-β-d-glucopyranoside) were tested for cytotoxicity on erythrocytes and Human Foreskin Fibroblasts cells and against the W2 strain of P. falciparum in culture. Results indicated that none of the extracts was cytotoxic at concentrations up to 10 µg/mL. Most of the extracts, fractions and subfractions inhibited the growth of P. falciparum with IC50 values ranging from 0.07 to 3.46 µg/mL. The most potent was the subfraction 30 from A. muricata stem bark (IC50 = 0.07 µg/mL) with a selectivity index of ˃ 142. Subfraction 3 from A. muricata root also exhibited very good activity (IC50 = 0.09 µg/mL) with a high selectivity index (SI ˃ 111). Amongst the isolated compounds, only gallic acid showed activity with IC50 of 3.32 µg/mL and SI > 10. These results support traditional claims for A. muricata and A. reticulata in the treatment of malaria. Given their limited cytotoxicity profile, their extracts qualify as promising starting points for antimalarial drug discovery.
The present study aimed at investigating the in vitro and in vivo susceptibility of malaria parasites to crude extracts and fractions from Polyalthia suaveolens, Uvaria angolensis, and Monodora tenuifolia. The ethanolic extracts were partitioned using water, dichloromethane, hexane, and methanol. The most promising fraction was subjected to column chromatography. The antiplasmodial effect of extracts, fractions and subfractions against P. falciparum Chloroquine resistant (PfK1) strain was determined using SYBR green florescence assay. The promising fraction was assessed for cytotoxicity against Human Foreskin Fibroblast (HFF) cells and further for safety in Swiss albino mice and suppressive effect against P. berghei. The methanol sub-fraction of P. suaveolens [PStw(Ace)] showed the highest potency with IC 50 of 3.24 µg/mL. Sub-fraction PS8 from PStw(Ace) was the most active with IC 50 of 4.42 µg/mL. Oral administration of PStw(Ace) at 5000 mg/kg b.w in mice showed no signs of toxicity. Also, it exerted the highest suppressive effect against P. berghei at 400 mg/kg b.w throughout the 4 days experiment. Overall, the results achieved supported the use of the three plants in the traditional treatment of malaria in Cameroon. More interestingly, the PStw(Ace) fraction might be of interest in future development of an antimalarial phytodrug.
Background: In the midst of transient victories by way of insecticides against mosquitoes or drugs against malaria, the most serious form of malaria, caused by Plasmodium falciparum, continues to be a major public health problem. The emergence of drug-resistant malaria parasites facilitated by fake medications or the use of single drugs has worsened the situation, thereby emphasizing the need for a continued search for potent, safe, and affordable new antimalarial treatments. In line with this need, we have investigated the antiplasmodial activity of 66 different extracts prepared from 10 different medicinal plants that are native to Cameroon. Methods: Extracts were evaluated for their capacity to inhibit the growth of the chloroquine-sensitive (Pf3D7) and resistant (PfINDO) strains of P. falciparum using the SYBR green fluorescence method. The cytotoxicity of promising extracts against human embryonic kidney cells (HEK293T) mammalian cells was assessed by MTT assay. Results: The antiplasmodial activity (50% inhibitory concentration, IC50) of plant extracts ranged from 1.90 to >100 μg/mL against the two strains. Six extracts exhibited good activity against both Pf3D7 and PfINDO strains, including cold water, water decoction, and ethyl acetate extracts of leaves of Drypetes principum (Müll.Arg.) Hutch. (IC503D7/INDO = 4.91/6.64 μg/mL, 5.49/5.98 μg/mL, and 6.49/7.10 μg/mL respectively), water decoction extract of leaves of Terminalia catappa L. (IC503D7/INDO = 6.41/8.10 μg/mL), and water decoction extracts of leaves and bark of Terminalia mantaly H.Perrier (IC503D7/INDO = 2.49/1.90 μg/mL and 3.70/2.80 μg/mL respectively). These promising extracts showed no cytotoxicity against HEK293T up to 200 μg/mL, giving selectivity indices (SIs) in the range of >31.20–80.32. Conclusions: While providing credence to the use of D. principum, T. catappa, and T. mantaly in the traditional treatment of malaria, the results achieved set the stage for isolation and identification of active principles and ancillary molecules that may provide us with new drugs or drug combinations to fight against drug-resistant malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.