Treatment resistance, relapse and metastasis remain critical issues in some challenging cancers, such as chondrosarcomas. Boron-neutron Capture Therapy (BNCT) is a targeted radiation therapy modality that relies on the ability of boron atoms to capture low energy neutrons, yielding high linear energy transfer alpha particles. We have developed an innovative boron-delivery system for BNCT, composed of multifunctional fluorescent mesoporous silica nanoparticles (B-MSNs), grafted with an activatable cell penetrating peptide (ACPP) for improved penetration in tumors and with Gadolinium for magnetic resonance imaging (MRI) in vivo. Chondrosarcoma cells were exposed in vitro to an epithermal neutron beam after B-MSNs administration. BNCT beam exposure successfully induced DNA damage and cell death, including in radio-resistant ALDH+ cancer stem cells (CSCs), suggesting that BNCT using this system might be a suitable treatment modality for chondrosarcoma or other hard-totreat cancers.
Myostatin, a negative regulator of skeletal muscle growth, is a promising target for treating muscle atrophic disorders. Recently, we discovered a minimal myostatin inhibitor (WRQNTRYSRIEAIKIQILSKLRL-amide) derived from positions 21-43 of the mouse myostatin prodomain. We previously identified key residues (N-terminal Trp, rodent-specific Tyr, and all aliphatic amino acids) required for effective inhibition through structure-activity relationship (SAR) studies based on and characterized a 3-fold more potent inhibitor bearing a 2-naphthyloxyacetyl group at position 21. Herein, we performed -based SAR studies focused on all aliphatic residues and Ala, discovering that the incorporations of Trp and Ile at positions 32 and 38, respectively, enhanced the inhibitory activity. Combining these findings with , a novel peptide displayed an IC value of 0.32 μM, which is 11 times more potent than . The peptide would have the potential to be a promising drug lead to develop better peptidomimetics.
Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides.
Primary Biliary Cirrhosis is an immune-mediated disease in which one of the epitopes recognized by antimitochondrial autoantibodies is a lipoylated fragment of the PDC-E2 protein. Accordingly, the synthesis of lipoylated peptides as diagnostic tools is a relevant target. Up to now, the proper tools for the introduction of lipoylation on building blocks to be used in Fmoc/tBu solid phase peptide synthesis (SPPS) are lacking, and the role of chirality in lipoylation remains poorly studied. In this paper, we present the synthesis of lipoylated lysine derivatives as pure diastereomeric building blocks suitable for Fmoc/tBu SPPS and their introduction in relevant peptide sequences to possibly serve as synthetic probes for the development of novel diagnostic tools for this disease. The optimization of the synthesis of lipoylated building blocks derived from racemic, (R)-, and (S)-α-lipoic acid is described. Synthesis of peptide probes incorporating lipoylation is described. An insight regarding the cleavage of lipoylated peptides is given, as well as a method to oxidize or reduce the 1,2-dithiolane ring of the lipoyl moiety directly on the peptide without any subsequent purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.