Due to their improved biocompatibility and specificity over synthetic materials, protein-based biomaterials, either derived from natural sources or genetically engineered, have been widely fabricated into nanofibrous scaffolds for tissue engineering applications. However, their inferior mechanical properties often require the reinforcement of protein-based tissue scaffolds using synthetic polymers. In this study, we report the electrospinning of a completely recombinant silkelastinlike protein-based tissue scaffold with excellent mechanical properties and biocompatibility. In particular, SELP-47K containing tandemly repeated polypeptide sequences derived from native silk and elastin was electrospun into nanofibrous scaffolds, and stabilized via chemical vapor treatment and mechanical preconditioning. When fully hydrated in 1x PBS at 37 °C, mechanically preconditioned SELP-47K scaffolds displayed elastic moduli of 3.4 to 13.2 MPa, ultimate tensile strengths of 5.7 to 13.5 MPa, deformabilities of 100 to 130% strain, and resilience of 80.6 to 86.9%, closely matching or exceeding those of protein-synthetic blend polymeric scaffolds. Additionally, SELP-47K nanofibrous scaffolds promoted cell attachment and growth demonstrating their in vitro biocompatibility.
Polymerizable cholesteryl‐succinyl silane was synthesized and fabricated into stable nanofibrous lipid membranes using a combined sol‐gel and electrospinning process. The resulting nanofibrous lipid membranes are capable of functionally immobilizing membrane proteins such as antibodies, thereby enabling targeted cell capture via the antigen‐antibody interactions.
An organic-inorganic hybridization strategy has been proposed to synthesize polymerizable lipid-based materials for the creation of highly stable lipid-mimetic nanostructures. We employ atomic force microscopy (AFM) to analyze the surface morphology and mechanical property of electrospun cholesteryl-succinyl silane (CSS) nanofibers. The AFM nanoindentation of the CSS nanofibers reveals elastic moduli of 55.3 6 27.6 to 70.8 6 35 MPa, which is significantly higher than the moduli of natural phospholipids and cholesterols. The study shows that organic-inorganic hybridization is useful in the design of highly stable lipid-based materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.