Laponite dispersions in water, at moderate ionic strength and high pH, are thixotropic: depending on previous history, they can be fluids or gels. The mechanisms of the fluid-gel and gel-fluid transitions have been examined through ionic analysis of the aqueous phase, static light, and small-angle neutron scattering, rheological experiments, and centrifugation. The results indicate that the particles attract each other in edge-to-face configurations. These attractions cause the particles to gather in microdomains, which subsequently associate to form very large fractal superaggregates, containing all the particles in the dispersion. A gel state is obtained when the network of connections is macroscopic. This network is destroyed by the application of sufficient strain, but it heals at rest. The addition of peptizers weakens the edge-to-face attractions, and makes the healing times much slower.
Aqueous dispersions of nanometric clay platelets (Laponite) have been dewatered through different techniques: centrifugation, mechanical compression, and osmotic stress (dialysis against a polymer solution). The positional and orientational correlations of the particles have been determined through small-angle neutron scattering. Uniaxial compression experiments produce concentrated dispersions (volume fraction > 0.03) in which the platelets have strong orientational and positional correlations. The orientational correlations cause the platelets to align with their normal along a common axis, which is the axis of compression. The positional correlations cause the platelets to be regularly spaced along this direction, with a spacing that matches the average volume per particle in the dispersion. The swelling law (volume fraction versus separation distance) is one-dimensional, as in a layered system. Changes in the applied osmotic pressure cause the water content of the dispersion to either rise or decrease, with time scales that are controlled by interparticle friction forces and by hydrodynamic drag. At long times, the dispersions approach osmotic equilibrium, which can be defined as the common limit of swelling and deswelling processes. The variation of the equilibrium water content with the applied osmotic pressure has been determined over 1 decade in volume fractions (0.03 < phi < 0.3) and 3 decades in pressures. This equation of state matches the predictions made from the knowledge of the forces and thermal agitation for all components in the dispersion (particles, ions, and water).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.